Расчет дуги для навеса


3D Расчёт навеса - онлайн калькулятор

Инструкция для онлайн калькулятора расчета односкатного навеса

Чтобы рассчитать козырек над входом (арочный навес) или плоский навес, необходимые размеры укажите в миллиметрах:

X – ширина козырька – это расстояние между его крайними точками по фасаду. Для защиты от осадков ширину козырька необходимо выбирать немного больше размера входной двери. Если есть возможность, следует делать козырек на всю ширину крыльца с запасом по 500 мм с каждой стороны. Однако следует помнить, чем больше поверхность навеса, тем больше зимой на ней будет снега, а значит, конструкция должна быть надежной.  Выбирая ширину козырька необходимо учитывать СП 20.13330.2011 «Нагрузки и воздействия».

Y – высота козырька (имеется ввиду значение высоты сегмента полукруглого козырька, а не уровень установки относительно порога дома), чем больше этот параметр, тем больше расход материала для накрытия.

Z – длина козырька – расстояние от фасада может быть разным, в зависимости от Ваших пожеланий и архитектуры дома. Минимальное значение длины для защиты от осадков составляет 700 мм. Можно ориентироваться на размеры крыльца с небольшим запасом. Обратите внимание, если длина навеса превышает 2000 мм, то под свободный край необходимо ставить дополнительные опоры.

Отметив пункт «Черно-белый чертеж» Вы получите чертеж, приближенный к требованиям ГОСТ и сможете его распечатать, не расходуя зря цветную краску или тонер.

Нажмите «Рассчитать».

Результаты расчета и их использование:

Ширина материала козырька – позволяет определить ширину необходимого покровного материала для накрытия полукруглого козырька или навеса. С помощью функции расчета этого параметра можно подобрать оптимальные размеры козырька для максимального использования материала заводских размеров. Зная площадь козырька, Вы сможете приобрести ровно столько материала для накрытия конструкции сколько нужно и не переплачивать за излишки. Обратите внимание, что калькулятор подсчитывает  параметры только кровельного материала для козырька и не рассчитывает чего и сколько нужно для изготовления каркаса и его крепления (металлопрофиль, доска, бетон, метизы).

X – ширина козырька – это расстояние между его крайними точками по фасаду. Для защиты от осадков ширину козырька необходимо выбирать немного больше размера входной двери. Если есть возможность, следует делать козырек на всю ширину крыльца с запасом по 500 мм с каждой стороны. Однако следует помнить, чем больше поверхность навеса, тем больше зимой на ней будет снега, а значит, конструкция должна быть надежной.  Выбирая ширину козырька необходимо учитывать СП 20.13330.2011 «Нагрузки и воздействия».

Y – высота козырька (имеется ввиду значение высоты сегмента полукруглого козырька, а не уровень установки относительно порога дома), чем больше этот параметр, тем больше расход материала для накрытия.

Z – длина козырька – расстояние от фасада может быть разным, в зависимости от Ваших пожеланий и архитектуры дома. Минимальное значение длины для защиты от осадков составляет 700 мм. Можно ориентироваться на размеры крыльца с небольшим запасом. Обратите внимание, если длина навеса превышает 2000 мм, то под свободный край необходимо ставить дополнительные опоры.

Отметив пункт «Черно-белый чертеж» Вы получите чертеж, приближенный к требованиям ГОСТ и сможете его распечатать, не расходуя зря цветную краску или тонер.

Нажмите «Рассчитать», чтобы получить расчеты и чертежи навеса.

Результаты расчета и их использование:

Ширина материала козырька – позволяет определить ширину необходимого покровного материала для накрытия полукруглого козырька или навеса. С помощью функции расчета этого параметра можно подобрать оптимальные размеры козырька для максимального использования материала заводских размеров. Рассчитав площадь козырька, Вы сможете приобрести ровно столько материала для арки навеса, сколько нужно и не переплачивать за излишки. Обратите внимание, что калькулятор подсчитывает параметры только кровельного материала для дуги навеса и не рассчитывает чего и сколько нужно для изготовления каркаса и его крепления (металлопрофиль, доска, бетон, метизы). При желании можно указать высоту равную маленькому числу, что позволит рассчитать плоский навес.

от нагрузок до количества материала

Как рассчитать арку для навеса: снеговая и ветровая нагрузки, количество материала для перекрытия кровли

Мало кто перед строительством небольших построек на участке делает все необходимые расчеты и, тем более, заказывает проект. Обычно просто берутся стандартные решения, надежности которых хватает с большим запасом. И это более чем рационально, когда речь идет о том же заборе из профнастила или небольшом хозблоке. Но расчет арочного навеса лучше сделать: все же, под кровлей постройки будут долго находиться люди или стоять автомобиль. Поэтому вы должны быть уверены в том, что крыша гарантировано выдержит даже сильные снегопады. А для этого нужно знать нагрузки.

Оглавление статьи

Расчет снеговой и ветровой нагрузки на арочный навес

По правилам, чтобы рассчитать арочный навес, нужно не только сделать расчет нагрузки на кровлю и подобрать под нее марку профлиста или поликарбоната, но и посчитать стальной каркас навеса по СП 16.13330.2017 «Стальные Конструкции». На практике этого обычно не делают, поскольку стандартные опоры из круглой или профильной трубы 80×80 мм или 100×100 мм и профили 40×40 мм для каркаса самой арки выдерживают намного большую нагрузку, чем необходимо. Во всяком случае, для навесов во дворе частного дома в южных и центральных регионах. Любые конструкции для северных территорий, а также большие навесы нужно рассчитывать по всем правилам, поскольку типовые решения для них не подходят.

Другое дело — снеговая и ветровая нагрузка. Тем более что такой расчет арки навеса при простой сводчатой кровле несложен. Эти нагрузки считаются по СП 20.13330.2016 «Нагрузки и воздействия», а если точнее — по разделам 10 и 11 этого норматива.

Снеговая нагрузка на арочный навес

Снеговая нагрузка считается по формуле:

где:

ce — коэффициент сноса снега с крыш зданий, который для большинства некупольных крыш будет равен 1.

ct — термический коэффициент, который для зданий без повышенных теплопотерь через крышу равен 1.

Sg — нормативное значение веса снегового покрова на 1 м², который зависит от места строительства, кг/м²:

μ — коэффициент, зависящий от формы крыши.

Для арочных кровель коэффициент μ рассчитывается по одной из двух схем:

Первая схема — для арок, в которые можно вписать окружность. Вторая — для стрельчатых арок.

Но не спешите ужасаться. Если вы делаете расчет арочного навеса из поликарбоната или профнастила ради выбора толщины и марки кровельного материала, коэффициент μ нужно просто взять равным 1. Не разбираясь с углами и касательными. Сейчас объясним почему.

Коэффициент μ для круговой арки считается для двух ситуаций:

  • при равномерно распределенном снеговом покрове: μ1=cos(1,5α) по варианту 1;
  • при неравномерно распределенной нагрузке с образованием снеговых мешков: μ2=sin(3α) по варианту 2.

При этом учитывается наибольшая нагрузка.

Коэффициент μ1 вычисляют в каждой точке кровли, выбирая наибольший. Для арочных кровель с круговым сечением (когда в свод можно вписать окружность, даже если крыша будет лишь небольшой ее частью) μ2 вычисляют в точках, где α=30° и α=60°, а также в крайнем сечении покрытия. Порядок расчета стрельчатых арочных крыш отличается, но принцип такой же: вычисляют несколько значений μ и выбирают наибольшее.

Все это важно только в тех случаях, когда речь идет о проектировании зданий, ангаров и других крупных сооружений с арочными кровлями. Ну и для тех, кто делает расчет арочных навесов не только ради выбора марки профнастила, но и для подбора сечения профиля и структуры фермы. Для этого нужно знать нагрузку в каждой точке кровли.

Пример

Покажем, как рассчитать полукруглый навес из профнастила с шириной кровли 4 м, в свод которой можно вписать окружность радиусом 2,5 м. В этом случае точки с α=60° нет, в крайнем сечении этот угол равен 53,13°.

По коэффициенту μ1 все очевидно — наибольшее значение у косинуса при угле, равном , то есть в вершине дуги, где касательная совпадает с осевой линией. В этом случае μ1=cos(1,5×0°)=1. В крайних точках μ1 будет наименьшим и равно μ1=cos(1,5×53,13°)=0,179.

Коэффициент μ2 считаем в двух точках — крайней и при α=30°:

Итого, независимо от метода расчета и радиуса арки, коэффициент μ все равно берем равным 1.

Проще говоря, когда мы делаем расчет арочного навеса для установки его во дворе дома, то приходим к частному случаю, при котором S0=Sg. Нормативный вес снегового покрова по районам приведен в таблице ниже.

Нормативные значения веса снегового покрова на 1 м²
Снеговые районы I II III IV V VI VII VIII
Sg, кН/м² 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0
Примечание

Чтобы перевести кН/м² в кг/м², нужно умножить на коэффициент 101,97. Или просто умножить на 100, если сильная точность расчетов не важна.

Причина выбора наибольшего коэффициента μ, несмотря на то что его значения в разных точках арки отличаются в несколько раз, проста: на кровлю обычно укладывают один и тот же материал, и он должен держать нагрузку в любой точке. Поэтому его подбирают по самой большой нагрузке, даже если она возникает всего в одном месте крыши. А вот когда нужно сделать расчет арки навеса из профтрубы, разница в нагрузке в разных точках кровли приобретает большое значение. От этого зависит толщина стенок и сечение профильных труб, а также конфигурация ферм. В этом случае их тоже можно взять с запасом, и для небольших построек так и делают. Но для промышленных и коммерческих строений, вроде ангаров или складов, такой подход значительно, в 1,5–2 раза увеличивает себестоимость строительства.

Пример

Снеговая нагрузка на полукруглый навес из профнастила, который устанавливают во дворе дома в Подмосковье (III снеговой район), будет равна 1,5×101,97=152,955 кг/м².

Ветровая нагрузка на арочный навес

Ветровую нагрузку рассчитывают по общей формуле:

где w0 — нормативная ветровая нагрузка, зависящая от района строительства, кПа:

Нормативные значения ветрового давления
Ветровые районы Ia I II III IV V VI VII
w0, кПа 0,17 0,23 0,30 0,38 0,48 0,60 0,73 0,85

k(ze) — поправочный коэффициент, учитывающий изменение ветрового давления в зависимости от высоты ze, который берется по таблице:

Значения коэффициента k в зависимости от высоты местности ze
Высота ze, м Коэффициент k для типов местности
А В С
≤ 5 0,75 0,5 0,4
10 1,0 0,65 0,4
20 1,25 0,85 0,55
40 1,5 1,1 0,8
60 1,7 1,3 1,0
80 1,85 1,45 1,15
100 2,0 1,6 1,25
150 2,25 1,9 1,55
200 2,45 2,1 1,8
250 2,65 2,3 2,0
300 2,75 2,5 2,2
Примечание
  • Местность типа А: открытые побережья морей, озер, водохранилищ, сельские местности при высоте построек менее 10 м, пустыни, степи, лесостепи, тундра.
  • Местность типа В: город, лес и другие местности, которые равномерно покрыты препятствиями высотой более 10 м.
  • Местность типа С: плотно застроенные городские районы со зданиями высотой более 25 м.

с — аэродинамический коэффициент.

Если с первыми двумя значениями все понятно, то с аэродинамическим коэффициентом возникают проблемы, поскольку в своде правил нет схемы для навеса с арочной кровлей. Поэтому ветровую нагрузку для таких конструкций считают, как для зданий с арочной кровлей. Для них аэродинамический коэффициент с будет равен:

где се1 и се2 определяют по графику ниже, а се3 равен −0,4.

Пример

Продолжим предыдущий расчет арочного навеса. Ширина l навеса равна 4 м, высота опор h12 м, высота арки f1 м. Для определения се1 и се2 по графику посчитаем коэффициенты: f/l=1/4=0,25, h1/l=2/4=0,5. Следовательно, се1 будет равен либо −0,8, либо примерно 0,13 (нагрузку считают с каждым коэффициентом и выбирают наибольшую), а се20,95. Рассчитаем аэродинамический коэффициент:

Больший коэффициент се2 берем для расчетов. Поскольку Подмосковье относится к первому ветровому району, w0=0,23 кПа. Так как навес меньше 5 м высотой, а пригород относится к территории типа В, k(ze) равен 0,5.

Как видно из примера, для арочных навесов, которые ставятся на неветренных территориях, расчетом ветровой нагрузки часто можно пренебречь.

Суммарная нагрузка на кровлю арочного навеса будет равна 152,955+0,0782≈153 кг/м². Профнастил С21 выдерживает до 195 кг/м² при схеме опирания 4 и шаге 1,8 м, поэтому для перекрытия навеса оптимально выбрать эту марку профлиста.

Расчет количества материала для арочного навеса

Посчитать количество кровельного материала для арочного навеса сложнее, чем для обычного укрытия с односкатной или двускатной крышей. Для таких кровель расчет материала начинают с вычисления площади ската. Для арочной крыши это не первый этап — сначала ее нужно «развернуть» на плоскость, чтобы получился прямоугольник, площадь которого нас и интересует. Одна сторона этого прямоугольника известна — это длина навеса. Вторая сторона — это длина дуги арки, и ее нужно рассчитать.

Если арочная кровля — часть окружности, то рассчитать дугу арки для навеса можно по формуле:

где:

L — длина дуги, м;

α — угол сегмента, рад;

R — радиус окружности, м.

Обычно угол сегмента и радиус окружности неизвестен. Зато можно напрямую измерить высоту арки h и хордуl — ширину навеса. Тогда:

Сложновато выглядит, не правда ли? Особенно пугающе смотрится арксинус, с которым и ученики выпускных классов не так часто встречаются. Поэтому мы решили облегчить вам задачу и сделали онлайн-калькулятор, который за вас рассчитает длину дуги арки для навеса:

Онлайн-калькулятор для расчета длины дуги арочного навеса

Просто введите высоту арки и ее ширину и нажмите на кнопку «Рассчитать», а остальное программа сделает за вас. Калькулятор считает только простые арки, высота которых меньше или равна половине ширины. Если у вас арочный навес с вертикальными участками по бокам, то считайте длину самой арки и длину этих стенок отдельно.

Теперь наконец, о непосредственном расчете материала на арочный навес из металлопрофиля. Рассчитанную длину дуги нужно умножить на длину навеса. Так мы получим площадь поверхности навеса, которую и будем застилать кровельным материалом. Дальше ее просто нужно разделить на полезную площадь листа выбранной марки профнастила. В отличие от полной площади, которую получают простым перемножением ширины листа на его длину, для расчета полезной площади используют размеры с учетом боковых нахлестов. Но если будут еще и поперечные нахлесты, то количество материала нужно будет увеличить на 15%.

Пример

Продолжим расчеты. Ширина нашего навеса — 4 м, высота арки — 1 м, следовательно, длина дуги равна 4,64 м. При длине навеса 6 м площадь поверхности кровли будет равна 4,64×6=27,84 м. Допустим, для перекрытия навеса будет использоваться профнастил С21. Длину листа берем с небольшим запасом — 4,7 м. Поскольку полезная ширина выбранной марки профнастила ровно 1 м, для навеса понадобится 6 таких листов.

Количество профильных труб для навеса зависит от проекта. Как правило, это:

  • 4–6 опорных труб 80×80 или 100×100 мм;
  • профиль 40×40 мм для дуг по одной штуке на каждый метр длины навеса;
  • профиль 60×30 мм или 40×40 мм для раскосов и боковых ферм.

Советуем считать профильные трубы в штуках, а не в метрах — так меньше вероятность ошибиться. Кроме того, при заказе готового комплекта профилей, вам не нужно будет тратить время на разметку труб и самостоятельную резку. Нужно будет просто собрать каркас навеса как конструктор.

Что в итоге

Расчет арочных навесов редко делают полностью — фермы считают только для ответственных или крупных объектов, но никак не для небольших построек во дворах частных домов. Для таких строений достаточно посчитать снеговую и ветровую нагрузки. Это нужно, чтобы выбрать подходящую марку профлиста или вид сотового/профилированного поликарбоната.

Кроме того, делают расчет материалов для арочных навесов из металлопрофиля. Он не так прост, как для обычных односкатных и двускатных кровель, поскольку скругленную поверхность нужно «развернуть» на плоскость. Но это не невыполнимая задача: нужно просто подставить значения в формулу или воспользоваться нашим онлайн-калькулятором.

Полезная статья? Сохраните ее в соцсетях, чтобы не потерять ссылку!

Коллектив oprofnastile.ru

Читайте по теме:

Расчет навеса из поликарбоната и профильной трубы: особенности процесса

Тема этой статьи — расчет навеса из поликарбоната своими руками. Нам предстоит научиться вычислять основные параметры конструкции, связанные с ее прочностью и размерами. Итак, в путь.

Именно этот тип навесов нам предстоит обсудить.

Что вычисляем

Нам предстоит научиться рассчитывать:

  • Толщину поликарбоната и шаг обрешетки в зависимости от предполагаемой снеговой нагрузки на квадратный метр.
  • Размеры покрытия арки (что с точки зрения геометрии сводится к расчету длины дуги).

Уточним: мы исследуем способы расчета дуги для известных радиуса и угла сектора, а также для случая, когда нам известны лишь расстояния между крайними точками поверхности арки.

  • Минимальное сечение трубы при известной нагрузке на изгиб.

В этом порядке и двинемся дальше.

Обрешетка и толщина покрытия

Начнем с расчета на снеговую нагрузку.

Прежде, чем выяснить, как рассчитать навес из поликарбоната, мы сформулируем пару допущений, на которых основан расчет.

  1. Приведенные данные актуальны для качественного материала без признаков разрушения ультрафиолетом. Поликарбонат без УФ — фильтра становится хрупким уже через 2-3 года эксплуатации на свету.
Отсутствие ультрафиолетового фильтра вызывает ускоренное разрушение поликарбоната.
  1. Мы сознательно пренебрегаем ограниченной деформационной устойчивостью обрешетки, считая ее абсолютно прочной.

А теперь — таблица, которая поможет подобрать оптимальную толщину поликарбоната и шаг обрешетки.

Нагрузка, кг/м2 Размеры ячейки обрешетки при толщине поликарбоната, мм
6 8 10 16
100 1050х790 1200х900 1320х920 1250х950
900х900 950х950 1000х1000 1100х1100
820х1030 900х1100 900х1150 950х1200
160 880х660 1000х750 1050х750 1150х900
760х760 830х830 830х830 970х970
700х860 750х900 750х950 850х1050
200 800х600 850х650 950х700 1100х850
690х690 760х760 780х780 880х880
620х780 650х850 700х850 750х950

Арка

Расчет по радиусу и сектору

Как рассчитать арку для навеса в том случае, если нам известны радиус изгиба и сектор дуги?

Арочный навес.

Формула будет иметь вид P=pi*r*n/180, где:

  • Р — длина дуги (применительно к нашему случаю — длина листа поликарбоната или профильной трубы, которая станет элементом каркаса).
  • pi — число «пи» (в расчетах, в которых не требуется крайне высокая точность, обычно принимаемое равным 3,14).
  • r — радиус дуги.
  • n — угол дуги в градусах.

Давайте в качестве примера вычислим своими руками длину арки навеса с радиусом 2 метра и сектором 35 градусов.

P = 3,14*2*35/180=1,22 метра.

В процессе работы нередко возникает обратная ситуация: необходимо подогнать радиус и сектор дуги под фиксированную длину арки. Причины понятны: цена поликарбоната достаточно велика для того, чтобы количество отходов хотелось минимизировать.

Очевидно, в этом случае произведение сектора и радиуса будет равным P/pi*180.

Попробуем подогнать арку под стандартный лист длиной 6 метров. 6/3,14*180=343,9 (с округлением). Дальше — простой подбор значений с калькулятором в руках: к примеру, для сектора дуги в 180 градусов можно взять радиус равным 343,9/180=1,91 метр; при радиусе в 2 метра сектор будет равен 343,9/2=171,95 градусов.

Расчет по хордам

Как выглядит расчет конструкции навеса из поликарбоната с аркой в том случае, если мы располагаем лишь информацией о расстоянии между краями арки и ее высоте?

В этом случае применяется так называемая формула Гюйгенса. Чтобы воспользоваться ей, мысленно поделим хорду, соединяющую концы арки, пополам, после чего проведем в середине перпендикуляр к хорде.

Точка С расположена точно в середине отрезка АВ. Точка М находится в месте пересечения перпендикуляра к отрезку АВ, проведенного из точки С, с линией дуги.

Сама формула имеет вид Р=2l+1/3*(2l-L), где l — хорда АМ, а L — хорда АВ.

Важно: расчет дает приблизительный результат. Максимальная погрешность составляет 0,5%; чем меньше угловой сектор арки, тем меньше погрешность.

Давайте выполним расчет длины арки для случая, когда АВ = 2 м, а АМ — 1,2 м.

P=2*1,2+1/3*(2*1,2-2)=2,4+1/3*0,4=2,533 метра.

Расчет сечения при известной нагрузке на изгиб

Вполне жизненная ситуация: часть навеса представляет собой козырек известной длины. Мы можем приблизительно оценить пиковую снеговую нагрузку на него. Как подобрать для балок профильную трубу такого сечения, чтобы она не согнулась под нагрузкой?

На фото — последствия неправильного расчета.

Обратите внимание! Мы намеренно не затрагиваем то, как рассчитать нагрузку на навес. Оценка снеговой и ветровой нагрузки — вполне самодостаточная тема для отдельного материала.

Для расчета нам понадобятся две формулы:

  1. М=FL, где М — изгибающий момент, F — приложенная к концу рычага сила в килограммах (в нашем случае — вес снега на козырьке), а L — длина рычага (длина балки, на которую приходится нагрузка от снега, от края до точки крепления) в сантиметрах.
  2. M/W=R, где W — момент сопротивления, а R — прочность материала.

И чем нам поможет это нагромождение неизвестных значений?

Само по себе — ничем. Для расчета недостает некоторых справочных данных.

Марка стали Прочность (R), кгс/см2
Ст3 2100
Ст4 2100
Ст5 2300
14Г2 2900
15ГС 2900
10Г2С 2900
10Г2СД 2900
15ХСНД 2900
10ХСНД 3400

Справка: для профтрубы обычно используются стали Ст3, Ст4 и Ст5.

Состав и области применения некоторых марок стали.

Теперь на основе имеющихся у нас данных можно вычислить момент сопротивления изгибу профильной трубы. Давайте так и сделаем.

Предположим, что на двухметровом козырьке навеса с тремя несущими балками из стали Ст3 скапливается 400 килограммов снега. Для упрощения расчетов условимся, что вся нагрузка приходится на край козырька. Очевидно, нагрузка на каждую балку составит 400/3=133,3 кг; при двухметровом рычаге изгибающий момент будет равным 133,3*200=26660 кгс*см.

Теперь вычислим момент сопротивления W. Из равенства 26660 кгс*см/W=2100 кгс/см2 (прочность стали) вытекает, что момент сопротивления должен быть равен как минимум 26660кгс*см/2100 кгс/см2=12,7 см3.

Каким образом значение момента сопротивления приведет нас к размерам профтрубы? Через таблицы сортамента, содержащиеся в регламентирующих размеры квадратной и профильной труб ГОСТ 8639-82 и ГОСТ 8645-68. Для каждого размера в них указан соответствующий ему момент сопротивления, причем для прямоугольного сечения — по каждой из осей.

Сверившись с таблицами, мы выясним, что минимальный размер квадратной трубы с нужными характеристиками — 50х50х7,0 мм; прямоугольной (при вертикальной ориентации большей из сторон) — 70х30х5,0 мм.

Альтернативное решение — сварка ферм из трубы меньшего размера.

Заключение

Надеемся, что не переутомили читателя обилием сухих цифр и формул. Как всегда, дополнительную информацию о методиках расчета и конструирования навесов из поликарбоната можно почерпнуть в видео в этой статье. Успехов!

Калькулятор расчета навеса из поликарбоната онлайн

* ВАЖНО! Для расчета навеса из поликарбоната, уровень нагрузки для Вашего региона необходимо определить исходя из карт снегового покрова и ветрового давления (указаны ниже), и таблиц, соответствующих Вашему региону.
На примере ниже, рассмотрим выбор нагрузки для Ростова-на-Дону и ближайших к нему городов. Согласно карте зон снегового покрова России, Ростов-на-Дону относится ко II классу, а согласно карте зон ветрового давления, наш город относится к III классу.
III Категория ветровая соответствует давлению в 38 кг/м2.
II Категория снеговая соответствует давлению в 120 кг/м2. При выборе нагрузки для расчета, следует взять максимальное значение из обеих таблиц.
Поэтому для Ростова-на-Дону и городов, удаленных от него не более чем на 100 км, необходимо выбрать расчетное значение для навеса не менее 120 кг/м2.
Карта зон снегового покрова на территории России Карта зон ветрового давления на территории России
Таблица снеговых нагрузок, по регионам
Снеговой регион I II III IV V VI VII VIII
Снеговая нагрузка, кг/м2 80 120 180 240 320 400 480 560
Таблица ветрового давления, по регионам
Ветровой регион Ia I II III IV V VI VII
Ветровая нагрузка, кг/м2 17 23 30 38 48 60 73 85

Не является публичной офертой. Расчет материала и обрешетки является приблизительным и не может быть использован для строительства.

Строим навес для машины своими руками. Цены и Расчеты.

Металлический навес 6х5.5 своими руками

простая математика при постройке навеса под авто

Столбы и лаги

1

А теперь как мы и планировали — давайте посчитаем что в итоге у нас получится если мы возьмемся сами изготовить такой арочный навес — так сказать своими руками (но возможно и с чьей то маленькой помощью).

Итак считаем:

И начнем мы со столбов. Нам понадобится 6 столбов 80х80х2 по три метра (из расчета того что 80см идет в землю) + две лаги на верх по 6 метров получаем 18 +12 = 30м. профильной трубы 80х80.

Металл все дорожает и дорожает но на данный момент эту проф трубу мы берем по 270р. за метр.

Цена:

Стойки (столбы) и лаги 80х80 = 8 100р.

Металлические фермы

2

Второе: металлические фермы для крыши навеса. Есть два варианта — либо купить уже готовые арки под навес (это конечно выйдет немного дороже, зато экономим в работе и времени), либо изготовить арочные фермы своими руками- но для этого как минимум нам понадобится профилегиб чтобы согнуть дуги для ферм навеса.

Итак считаем:

Покупаем уже готовые арочные фермы изготовленные из проф трубы 30х30х2 (в количестве 5 шт. — хотя фермы рассчитаны с большим запасом прочности и вполне бы хватило 4 шт., но как говориться — лучше перебдеть:)

Цена:

Цена 1фермы 5.5метра — 3 300р. х 5шт. = 16 500р.

Сейчас арочные фермы стали еще прочнее и дешевле - по 2 700р. за шт — 4 фермы достаточно для навеса длинной 6 метров – всего 10 800р.

Арочная ферма для навеса (5.5метра)

Сварка фермы

3

Теперь посчитаем сколько будет стоить стоит сварить ферму самостоятельно?
На каждую ферму нам понадобится по две профильных трубы 30х30 — 12 метров плюс 3 метра проф трубы 25х25 (укосы внутрь фермы)

Итак считаем:

Получаем 12м. по 88р. и 3м. по 65р.

Цена:

1 251р. — Стоимость одной фермы в материале. Умножаем на 5 штук
6 255р. — Стоимость металла на арки нашего навеса при учете их самостоятельного изготовления (правда по уму сюда нужно ещё заложить такие расходники как электроды , сварочная проволка, отрезные диски, электричество, покраска, ну и сама работа по изготовлению ферм)

Обрешетка для навеса

4

Обрешетка для навеса — Опять же самые популярные два варианта – это проф труба 30х20х1.5 либо проф труба 40х20x1.5

Итак считаем:

Шаг обрешетки навеса рекомендованный производителями поликарбоната — через 50 см исходя из этого нам понадобится 13 шт. по 6 метров = 78 метров

Цена:

30х20 - 78 х 75 = 5 850р.

40х20 - 78 х 85 = 6 630р.

Краска по металлу

5

Итак, металлокаркас навеса готов, и остается только его покрасить ну и покрыть пластиком.
Чтобы металл не ржавел — и навес долго служил мы обычно используем качественные эмали по металлу такие марки краски как NOVAX, Хамерайт, Дали.

Итак считаем:

В среднем на навес понадобится примерно 3л. краски.

Цена:

Хамерайт на навес обойдется примерно — 2 500р.

Краски Новакс и Дали — примерно на 1 500р.

Поликрбонат для навеса

6

Так как пластик (поликарбонат) выпускается производителями 12 метровой либо 6 метровой длинны, то исходя из этих соображений- чтобы не было перерасхода по пластику — мы и считали наш навес.
Для крыше навеса нам понадобится 3листа поликарбоната по 6м плюс два стыковочных профиля — можно конечно докупить торцевые планки- для закрытия торцов поликарбоната- но практика показывает что лучше их не ставить -уж очень часто из за них сотах пластика накапливается вода и грязь.

Мы ведь не хотим переплачивать?
Вообще -Если уж совсем экономить- то можно покрыть и 4мм пластиком(лично у меня 7метровый навес покрыт четверкой- и отлично себя чуствует уже 4год 🙂

Итак считаем:

посчитаем опять же два варианта это поликарбонат 6мм и 8мм
Поликарбонат 6мм — Стоимость 3 750р. за 6 метровый лист
Стыковочные профили мы берем неразъемные так как они намного дешевле и проще при монтаже (лучше взять под 8мм пластик – намного проще будет одеть стыковку при монтаже пластика) -250р./шт.

Цена:

Итого получается — 11 750р.

Поликарбонат 8мм Стоимость 4 350р. за лист 6 метров

Стыковки берем на 10мм пластик — 300р./шт.

В этом случае выходит — 13 650р.

«Мелочи»

7

Ну вот кажется и все такие мелочи как саморезы, электроды, доставки – точно не
посчитаешь - возьмем примерно 3 000р.

Итого

8

Из всего выше сказанного получаем две стоимости при самостоятельном изготовлении автонавеса 5.5 на 6 метров.

Итак считаем:

Одна цена – эконом вариант — Фермы навеса изготавливаем самостоятельно.
Вторая цена – фермы покупаем берем обрешетку 40х20 и поликарбонат 8мм.

Цена:

8 100р. + 6 255р. + 5 850р. + 1 500р. + 11 750р. + 3 000р. = 36 455р. — Стоимость материалов на навес 5х6 при самостоятельном изготовлении ферм.

8 100р. + 16 500р. + 6 630р. + 2 500р. + 13 650р. + 3 000р. = 50 380р. — Купили уже готовые фермы для навеса, взяли пошире проф трубу для обрешетки и потолше лист поликарбоната.

Итак что мы имеем в итоге?
И на сколько получится сэкономить — при самостоятельном подходе к постройке навеса под авто?
Имеем стоимости фирм производителей – от 87 500р. до 122 000р. за автонавес 35м2.
И суммы по материалам которые понадобятся при самостоятельной постройке металлического навеса: 36 455р. и 50 380р.

Вот наша примерная выгода в денежном эквиваленте — если
строим навес самостоятельно, а не заказываем на фирме:

Эконом: 87 500р. – 36 455р. = 51 045р.
Премиум (дорогой): 122 000р. – 50 380р. = 71 620р.

Тут конечно не заложена работа по монтажу навеса, но от себя скажу следущее — Хорошая бригада сварщиков (2человека) при наличии уже изготовленных ферм всех подготовленных и покрашенных материалов собирает такой навес за 1 смену (8 рабочих часов). Неопытные сварщики – самое большое проковыряются с ним 2 дня.

Наши бригады сварщиков за сборку навеса берут примерно 12 000р. за смену.

Но собрать навес при условии что все материалы есть, даже для одного толкового сварщика, который умеет пользоваться рулеткой и уровнем не особо хитрое дело. И в среднем рабочий день простого мастера сварщика в Москве и области стоит от 2 500р. до 5 000р. + ему нужен будет 1 подсобник 2 000р. в день.

Вот и получается в итоге что если взять это дело с постройкой навеса для авто в свои руки а не заказывать его у производителей то можно сэкономить в среднем от 40 000р. до 60 000р.
И это только сумма для небольшого по строительным меркам так скажем даже навесика -всего то 35м кв А представьте навес к примеру большой навес10х10 метров? А это уже как минимум в три раза больше. 🙂

Все расчеты на металл пластик краску и т.д сделаны по ценам (августа 2018)
Буду очень рад и признателен — Если вдруг моя статья принесет вам реальную пользу, то пишите комментарии-
звоните, всегда готовы помочь и подсказать по расчетам.

Расчёт фермы для навеса: формулы, которые понадобится использовать

Навес является простой архитектурной конструкцией, которая применяется в самых различных целях. В большинстве случаев его изготавливают при отсутствии гаража с накрытием на даче или для того, чтобы защитить площадку для отдыха от сильных лучей солнца. Для обеспечения надежности и прочности подобной постройки небольших размеров понадобится произвести расчет навеса. В конечном итоге можно будет получить данные, которые смогут показать, какие фермы будут использоваться и как их нужно будет варить.

Схему закрепления профильных труб можно увидеть на рис. 1.

На рисунке 1 изображена схема закрепления труб

Как рассчитать фермы для навеса своими руками?

Для того чтобы произвести расчет подобной конструкции для навеса, понадобится подготовить:

  • Калькулятор и специальное программное обеспечение;
  • СНиП 2.01.07-85 и СНиП П-23-81.

При проведении расчетов надо будет выполнить следующие действия:

  1. Прежде всего понадобится выбрать схему фермы. Для этого определяются будущие контуры. Очертания нужно выбирать исходя из основных функций навеса, материала и других параметров;
  2. После этого надо будет определить габариты изготавливаемой конструкции. Высота будет зависеть от типа кровли и используемого материала, веса и других параметров;
  3. Если размеры пролета превышают 36 м, понадобится произвести расчет для строительного подъема. В данном случае имеется ввиду обратный погашаемый изгиб от нагрузок на ферму;
  4. Необходимо определить размеры панелей сооружения, которые должны соответствовать расстояниям между отдельными элементами, которые обеспечивают передачу нагрузок;
  5. На следующем этапе определяется расстояние между узлами, которое чаще всего равняется ширине панели.

При произведении расчетов следуйте таким советам:

  1. Понадобится все значения высчитать в точности. Следует знать, что даже малейший недочет приведет к ошибкам в процессе произведения всех работ по изготовлению конструкции. Если нет уверенности в собственных силах, то рекомендуется сразу же обратиться к профессионалам, которые имеют опыт в проведении подобных расчетов;
  2. Для облегчения работы можно использовать готовые проекты, в которые останется лишь подставить имеющиеся значения.
На этом фото изображено металлическое укрытие

В процессе выполнения расчета фермы следует помнить, что в случае ее увеличивающейся высоты будет увеличиваться и несущая способность. В зимнее время года снег на подобном навесе практически не будет накапливаться. Для того чтобы увеличить прочность конструкции, следует установить несколько прочных ребер жесткости.

Для сооружения фермы лучше всего использовать трубу из железа, которая имеет небольшой вес, высокую прочность и жесткость. В процессе определения размеров для подобного элемента понадобится учитывать следующие данные:

  1. Для конструкций небольших размеров, ширина которых составляет до 4,5 м, понадобится использовать трубу из металла 40х20х2 мм;
  2. Для конструкций, ширина которых составляет менее 5,5 м, нужно использовать трубу с размерами 40х40х2 мм;
  3. Если ширина фермы составит более 5,5 м, лучше всего применить трубу 60х30х2 мм или 40х40х3 мм.

В процессе планирования шага ферм следует учитывать, что максимально возможное расстояние между трубами навеса составляет 1,7 м. Только в таком случае можно будет сберечь надежность и прочность конструкции.

Пример расчета ферм для навеса

  1. В качестве примера будет рассмотрен навес шириной 9 м уклоном в 8°. Пролет сооружения составляет 4,7 м. Нагрузки снега для региона находятся на уровне 84 кг/м²;
  2. Вес фермы составляет приблизительно 150 кг (следует взять маленький запас на прочность). Вертикальная нагрузка составляет 1,1 т на стойку с высотой 2,2 м;
  3. Одним концом ферма будет опираться на стенку постройки из кирпича, а вторым — на колонну для опоры навеса с помощью анкерных болтов. Для изготовления фермы используется квадратная труба 45х4 мм. Следует заметить, что с подобным приспособлением достаточно удобно работать;
  4. Лучше всего изготавливать фермы с параллельными поясами. Высота каждого из элементов составляет 40 см. Для раскосов используется труба сечением 25х3 мм. Для нижнего и верхнего пояса применяется труба 35х4 мм. Козырьки и другие элементы нужно будет сварить друг с другом, потому толщина стенки будет 4 мм.

В конечном итоге можно будет получить следующие данные:

  • Расчетное сопротивление для стали: Ry = 2,45 T/см²;
  • Коэффициент надежности — 1;
  • Пролет для фермы — 4,7 м;
  • Высота фермы — 0,4 м;
  • Число панелей для верхнего пояса конструкции — 7;
  • Углы нужно будет варить через один.

Все нужные данные для расчетов можно будет найти в специальных справочниках. Однако профессионалы рекомендуют производить расчеты подобного типа с помощью использования программного обеспечения. Если будет допущена ошибка, то изготавливаемые фермы сложатся под воздействием нагрузок снега и ветра.

Как рассчитать ферму для навеса из поликарбоната?

Навес является сложной конструкцией, поэтому перед приобретением определенного количества материала понадобится смета. Каркас для опоры должен иметь возможность выдерживать любые нагрузки.

Для того чтобы произвести профессиональный расчет конструкции из поликарбоната, рекомендуется обратиться за помощью к инженеру с опытом подобной работы. Если навес являет собой отдельную конструкцию, а не пристройку к частному дому, то расчеты усложнятся.

Уличная кровля состоит из столбиков, лаг, ферм и покрытия. Именно эти элементы и нужно будет рассчитывать.

Если планируется изготовить навес из поликарбоната арочного типа, то не получится обойтись без использования ферм. Фермы являются приспособлениями, которые связывают лаги и опорные столбики. От подобных элементов будут зависеть размеры навеса.

Навесы из поликарбоната, в качестве основы которых применяются металлические фермы, изготавливать достаточно сложно. Правильный каркас сможет распределять нагрузку по опорным столбикам и лагам, при этом конструкция навеса не будет разрушаться.

Для монтажа поликарбоната лучше всего использовать профильные трубы. Основной расчет фермы — учет материала и уклона. К примеру, для односкатной навесной конструкции с маленьким уклоном применяется неправильная форма фермы. Если конструкция имеет маленький угол, то можно использовать металлические фермы в форме трапеции. Чем больше радиус структуры арки, тем меньше существует возможностей задержки снега на кровле. В данном случае несущая способность фермы будет большой (рис. 2).

На рисунке 2 изображен будущий навес покрытый поликарбонатом

Если используется простая ферма домиком размерами 6х8 м, то расчеты будут такими:

  • Шаг между столбиками для опоры — 3 м;
  • Количество металлических столбиков — 8 шт;
  • Высота ферм под стропами — 0,6 м;
  • Для устройства обрешетки крыши понадобится 12 профильных труб с размерами 40х20х0,2 см.

В некоторых случаях можно сэкономить путем уменьшения количества материала. К примеру, вместо 8-ми стоек можно установить 6. Можно также сократить обрешетку каркаса. Однако не рекомендуется допускать потерю жесткости, так как это может привести к разрушению сооружения.

Подробный расчет фермы и дуги для навеса

В данном случае будет производиться расчет навеса, фермы которого устанавливаются с шагом 1 м. Нагрузка на подобные элементы от обрешетки передается исключительно в узлах фермы. В качестве материала для кровли используется профнастил. Высота фермы и дуги может быть любой. Если это навес, который примыкает к основной постройке, то главным ограничителем является форма кровли. В большинстве случаев сделать высоты фермы больше 1 м не получится. С учетом того, что понадобится делать ригеля между колоннами, максимальная высота составит 0,8 м.

Схему навеса по фермам можно увидеть на рис. 3. Голубым цветом обозначаются балки обрешетки, синим цветом — ферма, которую нужно будет рассчитывать. Фиолетовым цветом обозначаются балки или фермы, на которые будут опираться колонны.

В данном случае будет использоваться 6 ферм треугольной формы. На крайние элементы нагрузка будет в несколько раз меньше, чем на остальные. В данном случае металлические фермы будут консольными, то есть их опоры располагаются не на концах ферм, а в узлах, которые изображены на рис. 3. Такая схема позволяет равномерно распределять нагрузки.

На рисунке 3 изображена схема укрытия по фермам

Расчетная нагрузка составляет Q = 190 кг, при этом снеговая нагрузка равна 180 кг/м². Благодаря сечениям возможно произвести расчет усилий во всех стержнях конструкции, при этом нужно учитывать тот факт, что ферма и нагрузка на данный элемент является симметричной. Следовательно, понадобится рассчитывать не все фермы и дуги, а лишь некоторые из них. Для того чтобы свободно ориентироваться в большом количестве стержней в процессе расчета, стержни и узлы промаркированы.

Формулы, которые понадобится использовать при расчете

Понадобится определить усилия в нескольких стержнях фермы. Для этого следует использовать уравнение статического равновесия. В узлах элементов шарниры, потому значение моментов изгиба в узлах фермы равно 0. Сумма всех сил по отношению к оси x и y тоже равна 0.

Понадобится составить уравнение моментов по отношению к точке 3 (д):

М3 = -Ql/2 + N2-a*h = 0, где l — расстояние от точки 3 до точки приложения силы Q/2, которое составляет 1,5 м, а h — плечо действия силы N2-a.

Ферма имеет расчетную высоту 0,8 м и длину 10 м. В таком случае тангенс угла a составит tga = 0,8/5 = 0,16. Значение угла a = arctga = 9,09°. В конечном итоге h = lsina. Из этого следует уравнение:

N2-a = Ql/(2lsina) = 190/(2*0,158) = 601,32 кг.

Таким же образом можно определить значение N1-a. Для этого понадобится составить уравнение моментов по отношению к точке 2:

М2 = -Ql/2 + N1-a*h = 0;

N1-a*h = Ql/2;

N1-a = Q/(2tga) = 190/(2*0,16) = 593,77 кг.

Проверить правильность вычислений можно путем составления уравнения сил:

EQy = Q/2 — N2-asina = 0; Q/2 = 95 = 601,32 * 0,158 = 95 кг;

EQx = N2-acosa — N1-a = 0; N1-a = 593,77 = 601,32 * 0,987 = 593,77 кг.

Условия статистического равновесия выполнены. Любое из уравнений сил, которые использовались в процессе проверки, можно использовать для того, чтобы определить усилия в стержнях. Дальнейший расчет ферм производится таким же образом, уравнения не изменятся.

Стоит знать, что расчетную схему можно составить, так чтобы все продольные силы направлялись от поперечных сечений. В таком случае знак «-» перед показателем силы, который получен при расчетах, покажет, что подобный стержень будет работать на сжатие.

Для того чтобы определить усилие в стержне з-и, понадобится первым делом определить значение угла у: h = 3siny = 2,544 м.

Подробную информацию о том как рассчитать навес с помощью программы вы сможете узнать просмотрев это видео:

Ферма для навеса своими руками рассчитывается несложно. Понадобится лишь знать основные формулы и уметь их использовать.

Процедура расчета вспышки дуги на основе IEEE 1584

Расчеты опасности возникновения дуги основаны на расчетных значениях токов короткого замыкания и времени отключения устройств защиты от сверхтоков, найденных в исследовании короткого замыкания. Требования NFPA 70E включают в себя следующие элементы анализа опасности возникновения дуги:

  1. Расчет предельных расстояний вспышки дуги
  2. Расчет энергии вспышки дуги
  3. Рекомендуемые средства индивидуальной защиты
  4. Подготовка этикеток для оборудования дуговой разрядки

ARCAD предлагает программное обеспечение Arc Flash Analytic для оценки и маркировки вспышек дуги.Он вычисляет падающую энергию и границу вспышки дуги для каждого места на шине, включенной в энергосистему. Время срабатывания автоматически рассчитывается на основе настроек защитных устройств, библиотеки информации о защитных устройствах и значений дугового замыкания. Продолжительность дуги определяется из время-токовых характеристик применяемого устройства и расчетного тока дугового замыкания. Энергия падающего излучения и границы вспышки дуги рассчитываются с использованием стандарта NFPA 70E. Требования к одежде средств индивидуальной защиты (СИЗ) указаны в библиотеке одежды.

Уравнения NFPA 70E и IEEE 1584 для расчета вспышки дуги

Нормированная падающая энергия может быть найдена с помощью следующего уравнения:

lg E n = K 1 + K 2 + 1,081 * lgI a + 0,0011 * G

Уравнение 1

где,
E n - падающая энергия в Дж / см 2 , нормированная на время и расстояние. Вышеприведенное уравнение основано на данных, нормализованных для расстояния от возможной точки дуги до человека 610 мм.и время горения дуги 0,2 с.
K 1 = -0,792 для открытых конфигураций и -0,555 для конфигураций с коробкой / закрытого оборудования.
K 2 = 0 для незаземленных и заземленных систем с высоким сопротивлением. -0,113 для заземленных систем
G - зазор между проводниками в миллиметрах
I a - расчетный трехфазный ток дуги в кА. Он определяется с помощью формул 2 a) или b), чтобы можно было определить время срабатывания защитных устройств.

Для систем на 1000 В и ниже:

lgI a = K + 0,662 * lg I bf + 0,0966 * V + 0,000526 * G + 0,5588 * V * lgI bf - 0,00304 * G * lgI bf

Уравнение 2 а

где,
lg - логарифм по основанию 10 (log 10 )
I a - ток дуги в кА
K - равен -0,153 для открытых конфигураций. и -0.097 для коробчатых конфигураций
I bf - ток короткого замыкания на болтах при трехфазных КЗ в кА, симметричное действующее значение
В - напряжение системы в кВ
G - зазор между проводниками в миллиметрах.

Решить

lgI a = 0,00402 + 0,983 * lg I bf

Уравнение 2b

для приложений с системным напряжением от 1 до 15 кВ.

Падающую энергию можно найти с помощью следующего уравнения:

E = 4.184 * C f * E n * (t / 0,2) * (610 x / D x )

Уравнение 3

где,
E - воздействие падающей энергии в Дж / см 2
C f - расчетный коэффициент, равный 1,0 для напряжений выше 1 кВ и 1,5 для напряжений ниже 1 кВ
E n - нормализованная падающая энергия в Дж / см2, рассчитанная по формуле 1 выше
t - время дуги в секундах
D - расстояние от возможной точки дуги до человека в миллиметрах
x - показатель расстояния.

Для случаев, когда напряжение превышает 15 кВ или зазор находится за пределами диапазона модели, теоретически полученное значение Ли может применяться метод, а падающая энергия может быть определена с помощью следующего уравнения:

E = 2,142 * 10 6 * V * I bf * (т / д 2 )

Уравнение 4

где
E - падающая энергия в Дж / см 2
V - напряжение системы в кВ
t - время дуги в секундах
D - расстояние от возможной точки дуги до человека в мм
I bf - ток короткого замыкания на болтах.

Для модели, полученной эмпирическим путем IEEE Std 1584-2002, граница вспышки дуги рассчитывается с использованием следующего уравнения:

D B = [4,184 * C f * E n * (t / 0,2) * (610 x / E B )] 1 / x

Уравнение 5

Для метода Ли:

D B = [2,142 * 10 6 * V * I bf * (t / E B )] 1/2

Уравнение 6

где,
D B - расстояние границы от точки дуги в миллиметрах
C f - коэффициент расчета, равный 1.0 для напряжений выше 1 кВ и 1,5 для напряжений ниже 1 кВ
E n - нормализованная падающая энергия в Дж / см 2 , рассчитанная по уравнению 1
E B - падающая энергия в Дж / см 2 на граничном расстоянии. Обычно он устанавливается на уровне 5 Дж / см 2 (1,2 кал / см 2 ) для обнаженной кожи или на уровне предлагаемых средств индивидуальной защиты.
I bf - ток короткого замыкания на болтах при трехфазных КЗ, кА, симметричный среднеквадратичный
t - время дуги в секундах
x - показатель расстояния
Ibf - ток замыкания на болтах.

.Формула измерения дуги

| Как найти угол дуги (видео)

Определение измерения дуги

Дуга - это отрезок круга по окружности. Измерение дуги - это угол, образующий дугу в центре окружности, тогда как длина дуги - это промежуток вдоль дуги. Эта угловая мера может быть в радианах или градусах, и мы можем легко преобразовать их по формуле π радиан = 180 °.

Вы также можете измерить окружности , или расстояние вокруг окружности.Если взять окружность, ограниченную двумя радиусами, меньше ее полной длины, получится дуга . Этот изогнутый участок круга и внутреннего пространства называется сектором , как кусок пиццы. Когда вы разрезаете круглую пиццу, корочка разделяется на дуги.

  1. Определение измерения дуги
  2. Круговая дуга
  3. Измерение длины дуги в зависимости от длины дуги
  4. Градусов и радианов
  5. Формула измерения дуги
  6. Как найти длину дуги
  7. Как найти длину дуги
  8. Определение указанного угла дуги

Круговая дуга

Если мы разрежем вкусную свежую пиццу, мы получим две половинки, каждая из которых представляет собой дугу , измеряющую 180 °.Если мы сделаем три дополнительных разреза только на одной стороне (таким образом, мы разрезаем половину сначала на две четверти, а затем каждую четверть на две восьмых), у нас будет одна сторона пиццы с одной большой дугой 180 °, а другая сторона пицца с четырьмя дугами 45 °, как это:

Половина пиццы, представляющая собой один гигантский кусок, представляет собой большую дугу , поскольку ее размер составляет 180 ° (или более). На другой стороне пиццы есть четыре малых дуг , так как каждая из них имеет угол менее 180 °.

Измерение длины дуги в зависимости от длины дуги

Дуга - это часть длины окружности, которая находится между двумя точками на окружности. Дуга имеет два измерения:

  1. Длина дуги - это расстояние по окружности, измеряемое в тех же единицах, что и радиус, диаметр или полная длина окружности; это будут линейные единицы измерения, такие как дюймы, см, м, ярды и т. д.
  2. Измерение угла дуги , сделанное в центре окружности, частью которой является дуга, измеряется в градусах (или радианах)

Не путайте измерение дуги (длины или угла) с расстоянием по прямой линии хорды , соединяющей две точки дуги на окружности.Длина хорды будет , всегда короче длины дуги.

Градусов и радианов

Чтобы рассчитать величину дуги, вам необходимо понимать, как измеряются углы в градусах и радианах. Угол измеряется в градусах или радианах. Круг измеряет 360 градусов или 2π радиан, тогда как один радиан равен 180 градусам . Итак, градусы и радианы связаны следующими уравнениями:

360 ° = 2π радиан

180 ° = π радиан

Связь между радианами и градусами позволяет нам преобразовывать друг друга с помощью простых формул.Чтобы преобразовать градусы в радианы, мы берем меру в градусах, умноженную на число пи, деленное на 180.

Давайте переведем 90 градусов в радианы, например:

90 ° × π180 °

90π180

π2 радиан

Теперь переведем π3 радиан в градусы:

π3 × 180π

180π3π

1803 = 60 °

Формула измерения дуги

После того, как вы разобрались с радианами, мы можем использовать формулу измерения дуги, которая требует для вычисления длины дуги s и радиуса окружности r.

мера дуги = длина дуги

.

Arctan Calculator - вычисляет arctan (x) числа

Используйте этот калькулятор arctan, чтобы легко вычислить arctan (x) заданного числа. Онлайн-инструмент вычисления арктангенса для вычисления функции тангенса дуги в градусах или радианах. Поддерживает ввод десятичных чисел (0,5, 6, -1 и т. Д.) И дробей (1/3, 3/4, 1/6, -4/3 и т. Д.).

Функция Arctan

Арктангенс (он же arcus tangens ) является одной из обратных тригонометрических функций (антитригонометрических функций) и является обратной функцией касательной.Иногда его записывают как tan -1 (x), но этого обозначения следует избегать, так как оно может вызвать путаницу с обозначением экспоненты. Арктангенс используется для получения угла из касательного тригонометрического отношения, которое представляет собой отношение между стороной, противоположной углу, и смежной стороной треугольника.

Функция охватывает все действительные числа (-∞ - + ∞), как и результаты нашего калькулятора. Диапазон значений угла обычно составляет от -90 ° до 90 °. Существует ряд правил арктангенса, например, tan (arctan (x)) = x или arctanα + arctanβ = arctan ((α + β) / (1-αβ)), а также синус арктангенса: sin (arctan (x)) = x / √ (1 + x 2 ), что может помочь вам в расчетах тригонометрии.

Как рассчитать арктанган числа?

Самый простой способ вычислить это значение - использовать наш вышеупомянутый калькулятор арктангенса, который выведет результаты как в градусах, так и в радианах. Другие способы требуют предоставления дополнительной информации, такой как значения других тригонометрических функций для того же угла или для других углов в треугольнике (см. Пример ниже).

Вот таблица общих значений arctan:

Общие значения функции arctan
x arctan (x) (°) arctan (x) (рад.)
-∞ -90 ° -π / 2
-√3 -60 ° -π / 3
-1 -45 ° -π / 4
-1 / √3 -30 ° -π / 6
0 0 ° 0
1 / √3 30 ° π / 6
1 45 ° π / 4
√3 60 ° π / 3
+ ∞ 90 ° π / 2

π - это, конечно, математическая константа, примерно равная 3.14159.

Пример использования arctan

Учитывая приведенный ниже рисунок прямоугольного треугольника с известными длинами сторон a = 18 и b = 10 и прямым углом в точке C, как мы можем найти угол β в точке B, используя функцию обратной тангенса?

Зная, что касательная к β равна противоположной стороне, деленной на соседнюю, получаем tan (β) = b / a = 10/18 = 0,555. Затем просто используйте обратную функцию, чтобы получить β = arctan (0,555) = 29,03 ° (или 0,507 в радианах).


Расчет арктангенса дроби

Часто значение тангенса задается или вычисляется как простая дробь, например 3/4. Хотя для преобразования дроби в десятичную дробь можно использовать преобразователь дроби в десятичную дробь, наш калькулятор арктангенса фактически поддерживает прямой ввод различных дробей, таких как 1/2, 1/3, 1/6, 3/4, 4/3, -2. / 3 и даже 0,3 / 0,5. Чтобы вычислить arctan (3/4) или arctan (4/3) или другую дробь x / y, просто введите ее в поле ввода и нажмите «вычислить».

Для удобства, вот таблица общих значений арктангенса дробных тангенсов:

Общие значения тангенса угла дробных частей
x / y arctan (x / y) (°) arctan (x / y) (рад.)
1/2 26,565051 ° 0,463648 рад
1/3 18,434949 ° 0,321751 рад
3/4 36.869898 ° 0,643501 рад
4/3 53.130102 ° 0,927295 рад
1/6 9,462322 ° 0,165149 рад

Используя приведенный выше инструмент, вы можете вычислить его для любой простой дроби.

.

Длина дуги (расчет)

Использование исчисления для определения длины кривой .
(сначала прочтите о производных и интегралах)

Представьте, что мы хотим найти длину кривой между двумя точками. И кривая гладкая (производная непрерывна).

Сначала мы разбиваем кривую на небольшие отрезки и используем формулу «Расстояние между 2 точками» для каждой длины, чтобы получить приблизительный ответ:

Расстояние от x 0 до x 1 составляет:

S 1 = √ (x 1 - x 0 ) 2 + (y 1 - y 0 ) 2

И давайте используем Δ (дельта) для обозначения разницы между значениями, так что получается:

S 1 = √ (Δx 1 ) 2 + (Δy 1 ) 2

Теперь нам просто нужно намного больше:

S 2 = √ (Δx 2 ) 2 + (Δy 2 ) 2
S 3 = √ (Δx 3 ) 2 + (Δy 3 ) 2
...
...
S n = √ (Δx n ) 2 + (Δy n ) 2

Мы можем записать все эти строки всего за в одну строку , используя Sum:

S ≈ √ (Δx i ) 2 + (Δy i ) 2

Но мы все равно обречены на большое количество вычислений!

Может быть, мы сможем сделать большую электронную таблицу или написать программу для вычислений... но давайте попробуем что-нибудь еще.

У нас есть хитрый план:

  • имеют все Δx i и те же , поэтому мы можем извлечь их из квадратного корня
  • , а затем превратите сумму в интеграл.

Поехали:

Сначала разделите и , умножьте Δy i на Δx i :

S ≈ √ (Δx i ) 2 + (Δx i ) 2 (Δy i / Δx i ) 2

Теперь вычтем (Δx i ) 2 :

S ≈ √ (Δx i ) 2 (1 + (Δy i / Δx i ) 2 )

Возьмите (Δx i ) 2 из квадратного корня:

S ≈ √1 + (Δy i / Δx i ) 2 Δx i

Теперь, когда n приближается к бесконечности (когда мы движемся к бесконечному количеству фрагментов, и каждый фрагмент становится меньше), мы получаем:

S = √1 + (Δy i / Δx i ) 2 Δx i

Теперь у нас есть интеграл, и мы пишем dx , что означает, что Δx срезов приближаются к нулю по ширине (аналогично для dy) :

И dy / dx является производной функции f (x), которая также может быть записана f ’(x) :

S = √1 + (f ’(x)) 2 dx
Формула длины дуги

И теперь внезапно мы находимся в гораздо лучшем положении, нам не нужно складывать много срезов, мы можем вычислить точный ответ (если мы сможем решить дифференциал и интеграл).

Примечание: интеграл также работает по y, полезно, если мы знаем, что x = g (y):

Итак, наши шаги:

  • Найти производную f ’(x)
  • Решите интеграл от √1 + (f ’(x)) 2 dx

Несколько простых примеров для начала:

Пример: найти длину f (x) = 2 между x = 2 и x = 3

f (x) - это просто горизонтальная линия, поэтому ее производная равна f ’(x) = 0

Начать с:

Положить f ’(x) = 0 :

Упростить:

Вычислить интеграл:

S = 3 - 2 = 1

Таким образом, длина дуги между 2 и 3 равна 1.Ну, конечно, но приятно, что мы пришли к правильному ответу!

Интересный момент: часть «(1 + ...)» формулы длины дуги гарантирует, что мы получим , по крайней мере, расстояния между значениями x, например, в этом случае, когда f ’(x) равно нулю.

Пример: найти длину f (x) = x между x = 2 и x = 3

Производная f ’(x) = 1


Начать с:

Положить f ’(x) = 1 :

Упростить:

Вычислить интеграл:

И диагональ в единичном квадрате действительно является квадратным корнем из 2, верно?

Хорошо, теперь самое сложное.Пример из реального мира.

Пример: Металлические столбы установлены на расстоянии 6 м друг от друга через ущелье.

Найдите длину подвесного моста, идущего по кривой:

f (x) = 5 ch (x / 5)

Вот актуальная кривая:

Давайте сначала рассмотрим общий случай!

Подвесной кабель образует кривую, называемую цепной линией :

f (x) = a cosh (x / a)

Большие значения и имеют меньший прогиб в середине.
А «cosh» - это функция гиперболического косинуса.

Производная: f ’(x) = sinh (x / a)

Кривая симметрична, поэтому легче работать только на половине контактной сети, от центра до конца в точке «b»:

Начать с:

Положить f ’(x) = sinh (x / a) :

Используйте идентификацию 1 + sinh 2 (x / a) = cosh 2 (x / a):

Упростить:

Вычислить интеграл:

S = а ш (б / у)

Теперь, помня о симметрии, перейдем от −b к + b:

S = 2a sinh (б / у)

В нашем конкретном случае a = 5, а пролет 6 м изменяется от −3 до +3

S = 2 × 5 sinh (3/5)
= 6.367 м (с точностью до миллиметра)

Это важно знать! Если мы построим его ровно 6 м в длину, то будет , мы не сможем потянуть его достаточно сильно, чтобы он коснулся столбов. Но на 6,367 м он будет работать нормально.

Пример: Найдите длину y = x (3/2) от x = 0 до x = 4.

Производная: y ’= (3/2) x (1/2)

Начать с:

Вставить (3/2) x (1/2) :

S = √1 + ((3/2) x (1/2) ) 2 dx

Упростить:

Можно использовать интеграцию заменой:

  • u = 1 + (9/4) x
  • du = (9/4) dx
  • (4/9) du = dx
  • Границы: u (0) = 1 и u (4) = 10

И получаем:

Интегрировать:

S = (8/27) u (3/2) от 1 до 10

Вычислить:

S = (8/27) (10 (3/2) - 1 (3/2) ) = 9.073 ...

Заключение

Формула длины дуги для функции f (x):

Шагов:

  • Возьмите производную от f (x)
  • Запишите формулу длины дуги
  • Упростить и решить интеграл

.

Calculus II - Новый взгляд на длину дуги и площадь поверхности

Онлайн-заметки Павла

Примечания Быстрая навигация Скачать

  • Перейти к
  • Примечания
  • Проблемы с практикой
  • Проблемы с назначением
  • Показать / Скрыть
  • Показать все решения / шаги / и т. Д.
  • Скрыть все решения / шаги / и т. Д.
  • Разделы
  • Площадь поверхности с полярными координатами
  • Серия
  • и последовательность: Введение
  • Разделы
  • Приложения интегралов
  • Серия
  • и последовательности
  • Классы
  • Алгебра
  • Исчисление I
  • Исчисление II
  • Исчисление III
  • Дифференциальные уравнения
  • Дополнительно
  • Алгебра и триггерный обзор
  • Распространенные математические ошибки
  • Праймер для комплексных чисел
  • Как изучать математику
  • Шпаргалки и таблицы
  • Разное
  • Свяжитесь со мной
  • Справка и настройка MathJax
  • Мои студенты
  • Заметки Загрузки
  • Полная книга
  • Текущая глава
  • Текущий раздел
  • Practice Problems Загрузок
  • Полная книга - Только проблемы
  • Полная книга - Решения
  • Текущая глава - Только проблемы
  • Текущая глава - Решения
  • Проблемы с назначением Загрузок
  • Полная книга
  • Текущая глава
  • Прочие товары
  • Получить URL для загружаемых элементов
  • Распечатать страницу в текущем виде (по умолчанию)
  • Показать все решения / шаги и распечатать страницу
  • Скрыть все решения / шаги и распечатать страницу
  • Дом
  • Классы
  • Алгебра
    • Предварительные мероприятия
      • Целочисленные экспоненты
      • Рациональные экспоненты
      • Радикалы
      • Полиномы
      • Факторинговые многочлены
      • Рациональные выражения
      • Комплексные числа
    • Решение уравнений и неравенств
      • Решения и наборы решений
      • Линейные уравнения
      • Приложения линейных уравнений
      • Уравнения с более чем одной переменной
      • Квадратные уравнения - Часть I
      • Квадратные уравнения - Часть II
      • Квадратные уравнения: сводка
      • Приложения квадратных уравнений
      • Уравнения, сводимые к квадратичным в форме
      • Уравнения с радикалами
      • Линейные неравенства
      • Полиномиальные неравенства
      • Рациональные неравенства
      • Уравнения абсолютных значений
      • Неравенства абсолютных значений
    • Графики и функции
      • Графики
      • Строки
      • Круги
      • Определение функции
      • Графические функции
      • Комбинирование функций
      • Обратные функции
    • Общие графы
      • Прямые, окружности и кусочные функции
      • Параболы
      • Эллипсы
      • Гиперболы
      • Разные функции
      • Преобразования
      • Симметрия
      • Рациональные функции
    • Полиномиальные функции
      • Делящие многочлены
      • Нули / корни многочленов
      • Графические полиномы
      • Нахождение нулей многочленов
      • Частичные дроби
    • Экспоненциальные и логарифмические функции
      • Экспоненциальные функции
      • Логарифмических функций
      • Решение экспоненциальных уравнений
      • Решение логарифмических уравнений
      • Приложения
    • Системы уравнений
      • Линейные системы с двумя переменными
      • Линейные системы с тремя переменными
.

Калькулятор арктангенса онлайн - Расчет арктангенса - производная - первообразная

Описание:

Функция arctan позволяет вычислять арктангенс числа. Функция арктангенса - это функция, обратная функции касательной.

арктан
Описание:

arctan функция является обратной функцией касательная функция, Он вычисляет арктангенс числа онлайн .

  1. Вычисление арктангенса
  2. Чтобы вычислить арктангенс числа, просто введите число и примените arctan функция.

    Например, чтобы вычислить арктангенс следующего числа 10, введите arctan (`10`) или прямо 10, если Кнопка arctan уже появляется, возвращается результат 1.4711276743.2) `.

  3. Пределы арктангенса
  4. Пределы арктангенса существуют в точках `-oo` (минус бесконечность) и` + oo` (плюс бесконечность):

  • Функция арктангенса имеет ограничение в `-oo`, которое равно` pi / 2`.
    • `lim_ (x -> - oo) arctan (x) = pi / 2`
  • Функция арктангенса имеет предел в` + oo`, который равен `-pi / 2`.
    • `lim_ (x -> + oo) arctan (x) = - pi / 2`

Функция arctan позволяет вычислять арктангенс числа.Функция арктангенса - это функция, обратная функции касательной.
Синтаксис:

arctan (x), x - число.

Иногда используются другие обозначения: atan


Примеры:
arctan (`0`) возвращает 0
Производный арктангенс:

Чтобы дифференцировать арктангенс функции онлайн, можно использовать калькулятор производных, который позволяет вычислить производную функции арктангенса

Производная от arctan (x) - это производная_вычислителя (`" arctan "(x)`) = `1 / (1+ (x) ^ 2)`


Первообразный арктангенс:

Калькулятор первообразной позволяет вычислить первообразную функции арктангенса.2) `


Предельный арктангенс:

Калькулятор пределов позволяет вычислять пределы функции арктангенса.

Предел для arctan (x) равен limit_calculator (`" arctan (x) `)


Арктангенс обратной функции:

Функция, обратная арктангенсу , является тангенциальной функцией, обозначенной как tan.



Графический арктангенс:

Графический калькулятор может построить функцию арктангенса в интервале ее определения.



Свойство арктангенса функции:
Функция арктангенса - это нечетная функция.
Расчет онлайн с арктангенсом (арктангенс) .

Смотрите также