Пенопласт характеристики свойства марка назначение и применение


Пенопласт: технические характеристики

Высокие технические характеристики пенопласта обеспечивают ему широкую сферу применения. Особой популярностью материал пользуется у строителей, отлично справляясь с функцией теплоизоляции помещений. Толщина и плотность материала напрямую влияют на его свойства.

Структура и основные параметры пенопласта

Состав ячеистой структуры пенопласта чрезвычайно прост – материал привычного белого цвета содержит 2% из полистирола, остальные 98% занимает воздух. Технология изготовления основана на вспенивании полистирольных гранул с последующей обработкой микроскопических элементов газообразователем. Многократное повторение процедуры обеспечивает стройматериалу значительное уменьшение веса и плотности.

Вспененная масса на следующем этапе подвергается процедуре высушивания, в результате чего остаточная влага испаряется. Процесс проходит в сушильных емкостях на открытом воздухе, после этого пенопласт приобретает привычную для потребителя структуру. Размеры гранул варьируются в пределах 0,5-1,5 мм, толщина стенок не превышает 0,001 мм.

Готовые гранулы прессуют для придания им формы плит. Чтобы получить требуемые параметры, блоки обрабатывают паром и нарезают специальным инструментом. В зависимости от заказа, размеры пенопласта могут быть стандартной и нестандартной формы. Обычно в технических характеристиках материала указана толщина от 20 до 1000 мм, при этом плиты могут иметь следующие размеры:

  • 500х500 мм;
  • 500х1000 мм;
  • 600х1200 мм;
  • 1000х1000 мм;
  • 1000х2000 мм.

Многообразие форм выпуска плит пенополистирола и его технические характеристики, среди которых особо ценятся теплоизоляционные свойства, делают его востребованным стройматериалом при утеплении помещений с различной функциональной нагрузкой.

Свойства и характеристики материала

Пенопласт выдерживает колебания температур от -50 до +75оС без изменений технических характеристик. Детально ознакомиться с техническими характеристиками пенопласта поможет подробное описание его свойств:

  • Теплопроводность. Особая технология производства обеспечивает плитам пенопласта высокие теплоизоляционные свойства. Ячейки в форме замкнутых многогранников, размер которых не превышает 0,5 мм, препятствуют проникновению холодного воздуха и значительно снижают теплообмен. При повышении плотности материала данный показатель изменяется.
  • Звукоизоляция и защита от ветра. Стены помещения, в отделке которых использованы плиты пенопласта, надежно защищены от ветра. Среди технических характеристик внимания заслуживает высокая степень звукоизоляции, которая также обеспечивается благодаря ячеистой структуре материала.

  • Влагостойкость. Пенополистирол ценится строителями за низкую гигроскопичность относительно других материалов. Вода не способна проникнуть сквозь стенки ячеек, а только просачивается по каналам.  
  • Долговечность и прочность. Пенопласт сохраняет первоначальные технические характеристики на протяжении длительного времени. Плиты способны выдержать значительное давление без деформации и разрушения. Ярким свидетельством может служить применение пенопласта при обустрйостве взлетно-посадочных полос. Толщина плиты пенополистирола напрямую влияет на степень прочности материала, имеет значение и правильность укладки.

Внимательного изучения заслуживает устойчивость пенопласта перед агрессивной средой. Показатели устойчивости плит пенополистирола напрямую зависят от состава воздействующего вещества. Плиты пенопласта проявляют устойчивость к растворам:

  • цемента;
  • гипса;
  • битума;
  • кислотам, щелочам и соляным растворам;
  • морской воды;
  • не восприимчивы к воздействию водорастворимых и акриловых красок.

Длительное соприкосновение с веществами, в составе которых присутствуют масла растительного и животного происхождения, дизтопливо и бензин может негативно отразиться на технических характеристиках пенопласта.

Когда плиты пенополистирола используются при строительстве объектов, следует избегать контактов с составами, которые агрессивно влияют на структуру материала. Среди них:

  • скипидар;
  • ацетон;
  • органические растворители красок;
  • эфир с уксусно-этиловой основой;
  • всевозможные насыщенные углеводороды и вещества, полученные путем нефтепереработки.

Сюда относятся мазут, солярка, керосин и бензин. Контакт с вышеперечисленными компонентами приводит к нарушению структуры и потере качеств, указанных в технической характеристике, также может спровоцировать полное растворение.

Внимание! Искусственное происхождение пенопласта выступает неблагоприятной средой для появления и развития микроорганизмов. Но при значительном загрязнении поверхности пенополистирольных плит размножение микроорганизмов становится возможным.

Среди положительных качеств плит пенопласта, которые не отражаются в технической характеристике, отмечается удобство использования и простой монтаж. Малый вес обеспечивает легкость в проведении работ, структура не создает сложностей при необходимости нарезки и последующего монтажа.

Пенополистирол входит в категорию экологически чистых стройматериалов, в процессе эксплуатации он не выделяет ядовитых веществ. При работе с ним не требуется применение средств защиты индивидуального характера. Многочисленные сводные таблицы технических характеристик не отражают многочисленные положительные качества стройматериала. Он не образует пыли при нарезке, ценится за отсутствие запаха, не раздражает слизистые и кожные покровы, не ядовит.

Пожаробезопасность – важная качественная характеристика пенопласта. При выборе строительного материала, этому показателю уделяют особое внимание. Качественные изделия должны проявлять устойчивость к открытому огню. Плиты пенополистирола относятся к 3-4 классу горючести. Такой материал не поддерживает процесс горения. Температура, при которой он способен вспыхнуть, в 2 раза превышает аналогичный показатель по древесине (+491оС по сравнению с +230оС).

Если в составе пенополистирола присутствует антипирен, класс горючести такого материала снижается до Г2-Г1. В маркировке эта особенность выражена буквой С. Воспламенение плиты пенопласта может произойти в результате длительного контакта с открытым огнем. Прекращение воздействия огнем приводит к его затуханию на поверхности пенополистирольной плиты в течение 4 секунд.

Отдельные технические характеристики плит пенопласта изложены в сводной таблице:

Формы выпуска

Плотность материала выступает определяющим фактором при разделении пенопласта на марки. Она напрямую влияет на показатели прочности и теплопроводности. Технические характеристики отдельных марок помогут определиться со сферой использования материала:

  • Маркировка ПСБ-С 15 принадлежит плитам с самой малой плотностью, которая составляет 15 кг на м3. Такие плиты пенополистирола чрезвычайно легкие, применяются для утепления бытовок и строительных вагончиков, т.е. в местах временного пребывания людей.
  • Большей популярностью пользуется марка ПСБ-С 25, где плотность, соответственно, составляет 25 кг/м3. Сфера применения – утепление фасадов зданий, полов, в качестве теплоизоляции кровли.
  • Пенопласт ПСБ-С 35 обладает плотностью 35 кг на кубический метр. Высокие технические характеристики пенополистирола с маркировкой 35 востребованы в процессе производства ж/б конструкций и сэндвич панелей.
  • Чрезвычайно плотной структурой обладает пенопласт 50. За счет этого плиты активно используется при обустройстве полового покрытия в холодильных складах, строительстве дорог.

Анализируя таблицы с техническими характеристиками, можно сделать вывод о целесообразности приобретения плит пенополистирола с целью утепления стен плотностью 25 и 35 кг/м3. Причем для внутреннего утепления будет достаточно плотности 25, а для отделки снаружи лучше воспользоваться пенопластом 35.

При выборе материала для утепления стен, имеет значение толщина пенопласта. Точных рекомендаций дать невозможно. Выбор зависит от ряда сопутствующих факторов, куда входят:

  • Климатические условия региона, где расположена постройка.
  • Материал, используемый для возведения стен. Зачастую стены строения состоят из нескольких слоев, различных по своим техническим характеристикам. Поэтому требуется определить суммарный показатель.
  • Плотность плиты пенополистирола, которая определяется маркировкой.

Обычно, по совокупности факторов, при необходимости утепления внутренних стен применяют пенопласт 50 мм, использование пенопласта 100 мм больше востребовано при наружных работах.

Достоинства и недостатки

Рассматривая технические характеристики пенопласта, в заключение стоит подвести итоги о положительных качествах материала и отдельных недостатках.

Итак, преимущества использования в качестве утепления:

  • Доступная стоимость.
  • Низкая теплопроводность обеспечивает пенопласту высокие характеристики теплоизоляции.
  • Легкий вес и простой монтаж.
  • Низкая гигроскопичность.
  • Экологическая безопасность.

Недостатков немного, но они присутствуют:

  • Горючесть. При выборе отдайте предпочтение усовершенствованной продукции, в составе которой присутствуют антипирены. Они снижают температуру воспламенения и обеспечивают самозатухание после прекращения воздействия открытым огнем.
  • Пенопласт разрушается под воздействием УФ лучей и отдельных химических составов, поэтому требует защиты.

Применение плит пенополистирола снаружи без дополнительной отделки нецелесообразно.

По своим техническим характеристикам пенопласт не уступает другим материалам с теплоизоляционными свойствами, а во многом даже превосходит их. Для получения качественной теплоизоляции стен важно правильно определить необходимую плотность материала и толщину плит. Вычисления ведут с учетом климатических особенностей региона и характеристик стен строения.

их значение для определения характеристики материала и его использования

Пенопласт считается особенно эффективным строительным материалом, применяемым для утепления построек изнутри и снаружи. Основанием для широкого распространения в строительном деле вспененного ППС (или полистирола) являются плотность пенопласта и его превосходные тепло- и звукоизоляционные свойства материала. Множество марок материала открывают большие возможности по подбору наиболее подходящего варианта.

Определение и свойства

Пенопласт — это утепляющий материал, который обладает отличными тепло- и звукоизоляционными свойствами.

Стоимостное выражение пенополистирольных плит намного ниже, чем на остальные утеплители. Эксплуатация плит из пенополистирола в строительных работах сопутствует уменьшению эксплуатационных затрат на отопление или охлаждение жилых или коммерческих объектов в десятки раз.

Имеется несколько точек зрения, которые связаны с понятием плотности. Единица измерения этого параметра — килограмм на один метр в кубе. Эта величина рассчитывается из отношения веса к объему. Со стопроцентной точностью нельзя измерить качественные свойства пенополистирола, которые связаны с его непроницаемостью и плотностью. Даже вес этого утеплителя не оказывает влияние на его теплоизоляционные способности.

Размышляя над вопросом, какой утеплитель приобрести, клиенты всегда интересуются его плотностью. Через эти данные можно оценивать прочность материала, его вес и теплопроводность. Значение плотности всегда имеет отношение к определенному диапазону.

При производстве плит из пенополистирола изготовитель устанавливает себестоимость выпускаемой продукции. Отталкиваясь от формулы нахождения плотности, масса утеплителя будет влиять на указанное значение. Чем больше масса материала, тем он более плотный, и потому его сумма выше. Так происходит потому, что пенопласт как сырьевой материал для плит теплоизолятора, имеет важное значение. Он составляет приблизительно 80% от единой себестоимости готовой выпускаемой продукции.

Структура и состав готового материала

Пенoпласт изготавливают из шариков пенополистирола, которые наполнены воздухом.

Каждый теплоизоляционный материал обязательно содержит воздух, располагающийся в порах. Улучшенный показатель теплопроводимости напрямую зависит от размера атмосферных воздушных масс, содержащихся в материале. Чем их больше, тем меньше будет составляющая теплопроводности. Производственный процесс пенопласта происходит из шариков пенополистирола, сохраняющих воздух.

В связи с вышесказанным, можно сделать вывод, что концентрация пенополистирола влияет на его теплопроводность. Если же эта величина меняется, то перемены в показателях теплопроводности протекают в границах процентных долей. Стопроцентное сохранение воздуха в утеплителе сопряжено с его исключительной теплосберегающей способностью, поскольку для воздуха свойственен самый небольшой коэффициент теплопроводности.

Благодаря невысокой теплопроводности утеплителя обеспечивается высокий процент энергосбережения. Если сопоставлять кирпич с пенопластом, то их способность к энергосбережению будет заметно отличаться, потому что 12 см толщины теплоизолятора равносильны 210 см мощности кирпичной или 45 сантиметровой бревенчатой стены.

Схема применения различных марок

Выпускаются такие ключевые виды пенополистирола, имеющие отличия по плотности и прочим характеристикам:

  • ПCБ-C-15, плотность этой марки пенопласта до 15 кг/кyб.м.
  • ПCБ-C-25, от 15 кг/кyб.м. до 25 кг/кyб.м.
  • ПСБ-C-35, от 25 кг/кyб.м. до 35 кг/кyб.м.
  • ПCБ-C-50, от 35 кг/кyб.м. до 50 кг/кyб.м.

Составляющая теплопроводности пенопласта, выраженная в цифровом значении, относится к интервалу 0.037 Bт/мK — 0.043 Bт/мK. Указанное значение можно соотнести с показателем теплопроводимости воздуха, которое равно 0.027 Bт/мK.

Использование пенопласта ПСБ-С-15

Пенопласт ПСБ-С-15 можно применять для утепления фасадов домов. Такой тип утеплителя практически не используется в строительстве. Он используется в конструкциях, которые прилагаются к сооружениям. Это могут быть открытые балконы или веранды, которые выполняют декоративную функцию. Посредством пенопласта ПСБ-С-15 формируют фигуры для фасадов, а это позволяет:

  • обрамлять углы дома, окна;
  • разделять этажи через создание карнизов.

Для чего подходит ПCБ-C-25

Плотность пенопласта рассчитывают по аналогии с определением значения плотности кирпича. К примеру, если 1 куб пенопласта обладает плотностью 25, то его вес будет равен 25 кг. Прочность на изгиб и сжатие пенопласта находится в зависимости от его плотности. Плотность пенопласта и его марка — это абсолютно разные характеристики. Например, если взять к рассмотрению, CПБ-C25 или CПБ-C50, параметр плотности будет колебаться в промежутке 35−50 или 15−25.

Плиты, имеющие плотность 25, применяют, чтобы утеплять фасады дома. Стандартом считают пенопласт, толщина которого составляет 5 см. Этот вид утеплителя употребляется для многих целей. Его толщина может быть изменена — это будет зависеть от предпочтений потребителя.

Пенопласт максимальной толщины можно использовать с целью утепления стен, которые подвержены воздействию атмосферных масс. Им также можно изолировать стены, поскольку такой материал отлично препятствует появлению грибка.

Исходя из обозначения материала, он используется в различных строительных сооружениях, а это не ухудшает его качественных характеристик.

Применение пенопласта ПСБ-С-35

Для того чтобы, идеально выравнивать стены, можно поменять толщину пенополистирольной плитки. Злоупотреблять изменением размера толщины материала не рекомендуется, поскольку это спровоцирует на углах строения определенные проблемы с закреплением системы водоотливов.

Прежде чем выбирать утеплитель необходимой толщины, рекомендуется заранее узнать, каково количество запаса газовой трубы, потому что ее ни в коем случае нельзя закрывать, поскольку это может нарушить эстетику внешнего вида строения. В таком случае желательно предпочесть все-таки материал ПCБ-C-35 толщиной 5 см, чем материал плотностью 25 и толщиной 10 см, тем боле что их расценки практически не отличаются.

Утеплителем, плотность которого 35, можно изолировать откосы окон и дверей, фасады построек. Стоит он, как правило, вдвое больше, чем тот же материал из полистирола с плотностью 25. При толщине 5 см им можно утеплять нежилые конструкции и гаражи. При толщине аналогичного утеплителя в 7 сантиметров его можно использовать при термоизоляции жилых помещений.

Благодаря нормальному уровню плотности можно применять теплоизолятор с минимальной толщиной, что не подразумевает ухудшения качества утепления. В случае если теплоизолятор из пенополистирола оказывается более твердым, то с его помощью можно проводить идеальное утепление стен подвальных помещений и фундаментов.

Характеристики и свойства пенопласта, особенности утеплителя

Характеристики пенопласта позволяют определить степень его эффективности, как утеплителя, при определенных условиях. Этот материал имеет свои плюсы и минусы, поэтому его используют выборочно. Но такие свойства пенопласта, как теплопроводность, длительный срок службы и сравнительно хорошая паропроницаемость делают его довольно популярным, несмотря на появление более новых аналогов.

Структура и сферы применения

Свои характеристики пенопласт приобретает благодаря особому строению. Это гранулированный материал, в основе которого полистирол. Он содержит до 98% воздуха, тогда как объем плотной структуры не превышает 2%. Применение сухого пара с целью обработки гранул обеспечивает основные свойства: низкую плотность пенопласта и малый вес.

Листы формуются после тщательной просушки основного материала. Такая технология производства придает и другие качества пенопласту: невысокий коэффициент теплопроводности, что делает его популярным утеплителем; низкая степень прочности листа. Последний из факторов может повлиять на срок службы изделия. Применяют утеплитель данного вида в разных областях: строительная отрасль; пищевая промышленность (упаковка), радиоэлектроника, судостроение.

Обзор технических характеристик

Существуют разные марки пенопласта, каждая из которых имеет собственный набор свойств и параметров. На основании этой информации следует делать выбор.

Показатель коэффициента теплопроводности

Замкнутые ячейки представляют структуру пенопласта, благодаря чему утеплитель данного вида приобретает способность задерживать тепло в помещении. Коэффициент теплопроводности составляет: от 0,033 до 0,037 Вт/(м*К).

За счет низкой теплопроводности утеплителя обеспечивается высокая степень энергосбережения.

Эффективным считается утеплитель, значение данного параметра которого составляет не более 0,05 Вт/(м*К). Существуют и более действенные материалы, однако, средние характеристики пенопласта позволяют успешно применять его до сих пор.

Звукоизоляционные качества, защита от ветра

Наилучшим для защиты от посторонних шумов является материал, который имеет следующие технические характеристики: низкую теплопроводность и одновременно с тем способность пропускать воздух. Под эти критерии подходит пористый пенопласт. Это означает, что утеплитель данного вида отлично справляется с задачей по защите объекта от шума.

Причем, чем значительнее толщина листа, тем лучше звукоизоляционные качества материала. Если нужно обеспечить защиту объекта от ветра, то пенопласт успешно решит и эту проблему, так как состоит из множества закрытых ячеек.

Влагопоглощение

Способность утеплителя данного вида поглощать воду довольно низкая, что позволяет считать его негигроскопичным. Показатель влагопоглощения при постоянном контакте с водой на протяжении суток соответствует 1%.

Материал равнодушен к воздействию влаги и практически ее не впитывает.

Это несколько больше, чем у пеноплекса (0,4%), но и меньше, чем у большинства некоторых других аналогов, например, минваты. Благодаря низкой гигроскопичности срок службы пенопласта значительно продлевается, так как снижается риск образования плесени или грибка.

Температурный режим

Рассматриваемый утеплитель не меняет своих свойств при существенном повышении температуры (до 90 градусов). Низкие значения также не оказывают пагубного влияния на материал данного вида, поэтому его задействуют, в частности, при теплоизоляции наружных стен. Но во время укладки с применением клеящего состава рекомендуется соблюдать температурный режим: не ниже +5 и не более +30 градусов.

Влияние внешних факторов

К таковым относят: перепады температур, ветровая нагрузка, дожди, снега и любой механический источник давления. Прочность листа пенопласта невысока под воздействием последнего из рассмотренных факторов.

Благодаря своим теплоизоляционным характеристикам пенопласт получил широкое распространение при утеплении стен, кровли, потолка, балконов.

Это обусловлено малым весом и крупноячеистой структурой. Причем толщина материала практически не меняет ситуацию. Если сравнить его с пеноплексом, данный вариант отличается высокими прочностными характеристиками.

Степень устойчивости к химическим веществам и микроорганизмам

При контакте с рядом веществ свойства пенопласта не меняются, к таковым относятся: соляные растворы, щелочь, кислота, гипс, известь, битум, цементный раствор, некоторые виды лакокрасочных материалов (на основе силиконов и водорастворимые составы). Нужно избегать контакта утеплителя на основе полистирола с такими веществами: растворители, ацетон, скипидар, бензин, керосин, мазут.

Учитывая низкую гигроскопичность и закрытую структуру материала, пенопласт не обеспечивает подходящие условия для размножения вредоносных микроорганизмов.

Пожаробезопасность

Утеплитель относится к быстровоспламеняющимся материалам (категория горючести Г3 и Г4), однако, время его горения при условии устранения источника возгорания не превышает 3 сек.

Если выбрали утеплитель пенопласт, знайте, он плохо противостоит горенью

Будет заблуждением считать такой материал полностью безопасным, но все же его часто используют, что обусловлено выделением меньшего количества энергии при горении, а также самопроизвольным затуханием.

Свойства

Габариты листа, в частности, его толщина, а также плотность являются одними из главных показателей, на основании которых делается выбор материала.

Основные характеристики и свойства утеплителя

Плотность

Данный параметр представляет собой соотношение веса к объему, соответственно, единицы измерения – кг/куб. м. Чем более высокой является плотность пенопласта, тем он будет тяжелее. А вес изделия – один из факторов, формирующих стоимость изделия. Соответственно, чем больше плотность и вес, тем дороже будет стоить утеплитель.

Пенопласт имеет 4 марки плотности: М15, М25, М35, М50. Выше марка — больше плотность, больше плотность — выше теплоизоляция.

Если рассматривать влияние данного параметра на показатель теплопроводности, то прямой связи не наблюдается. Основа пенопласта – воздухонаполненные закрытые ячейки. Повышение плотности может лишь незначительно изменить показатель теплопроводности (на десятые доли) из-за уплотнения гранул. В целом же общая структура материала остается неизменной, а значит, не меняется и его способность удерживать тепло.

Существуют разные марки утеплителя на основе полистирола: с обозначением 15, 25, 35 и 50. Значения соответствуют толщине листа. Дополнительно могут указываться некоторые буквы: А, Н, Ф, Р, Б, С, что определяет способ изготовления или специфические свойства.

Габариты

Стандартные размеры пенопласта:

  • 1,0х1,0 м;
  • 1,0х0,5 м;
  • 2,0х1,0 м.

Толщина утеплителя варьируется в пределах от 10 до 100 мм с определенным шагом: 10 мм; 20 мм; 30 мм; 40 мм; 50 мм и 100 мм. Чем больше значение данного параметра, тем дороже он обойдется. На прочностные характеристики толщина не влияет, если только не рассматривается материал с высокой плотностью.

Плюсы и минусы

Недостатков у листов полистирола немного: низкая прочность на изгиб; разрушение при контакте с некоторыми видами красок и агрессивных составов; недостаточно высокий показатель паропроницаемости, хоть и выше, чем у пеноплекса.

Главные плюсы:

  • Низкая цена;
  • Длительный срок службы;
  • Небольшой вес;
  • Незначительный уровень гигроскопичности;
  • Устойчивость к высокой и низкой температуре;
  • Несложный монтаж и простота обработки;
  • Устойчивость к образованию грибка;
  • Низкий коэффициент теплопроводности.
Плюсы и минусы пенопласта, сравнение с другими утеплителями

Все эти положительные качества обеспечивают технические характеристики утеплителя, а также его свойства. Срок службы рассматриваемого материала хоть и длительный, однако, ниже, чем у аналога – пеноплекса.

По некоторым характеристикам этот утеплитель превосходит другие аналоги, например, минвату. Но есть и существенные недостатки, в частности, неустойчивость к ряду составов, низкая прочность.

Оценка статьи:

Загрузка...

Поделиться с друзьями:

характеристики и свойства ка утеплителя |

10 июля 2016      Напольные и стеновые материалы

Пенопласт – один из самых эффективных синтетических утеплителей, используемых для наружной и внутренней отделки дома. Он быстро приобрел популярность благодаря хорошим эксплуатационным качествам и стал распространяться в многочисленных областях частного и промышленного строительства.

Состав и структура материала

Основной компонент пенопласта – вспененный полистирол, причем самого полимера в готовом продукте содержится всего около 2% (по объему). Все остальное пространство занимает газ (природный или углекислый), заключенный в замкнутые полистирольные капсулы или ячейки. Макроструктура материала представляет собой гранулы диаметром в несколько миллиметров, спрессованные и затем разрезанные в конгломераты разной формы.

Стенки полимерных капсул обладают минимальной пористостью, поэтому в ячейки с газом почти не попадает влага. Это поддерживает низкую плотность пенопласта и сохраняет его теплоизоляционные качества. Для снижения горючести в материал вводят ряд добавок, снижающих время самостоятельного горения (без внешнего источника пламени). Благодаря этому повышается пожаробезопасность при условии кратковременного воздействия огня.

Физические свойства пенопласта

К главным характеристикам пористого полистирола относятся:

  • прочность – пенопласт не отличается выдающимися прочностными характеристиками и способен крошиться и ломаться даже при слабом механическом воздействии. Его можно легко повредить при помощи острых предметов или просто ударив по поверхности. Чтобы снизить вероятность разрушения, пенопласт покрывают слоями более твердого материала, равномерно распределяющего внешние нагрузки;
  • гибкость – пенополистирол слабо поддается изгибающим воздействиям и может сломаться под ними в любой момент. По этой же причине пенопластовые плиты устанавливают лишь стационарно, избегая любых крутящих нагрузок;
  • теплопроводность – наличие в полых капсулах газов (естественных теплоизоляторов) обеспечивает материалу низкий коэффициент теплопередачи. Этому также способствует отсутствие конвекции внутри пор из-за их малого диаметра. Чтобы полностью прогреть кусок пенопласта до заданной температуры, понадобится длительное время;
  • склонность к усадке – свободнолежащие плиты из пенополистирола поддаются незначительной усадке, вызванной силой тяжести. Величина усадки составляет 1,5-3 мм в течение шести месяцев. По окончании этого срока естественное уплотнение материала прекращается;
  • температурное расширение – при повышении температуры линейные размеры плиты увеличиваются (процесс является обратимым). Численные показатели расширения соответствуют примерно 1 мм на 1 м плиты пенопласта при изменении температуры на 15-20 °С;
  • паропоглощение – пенопласт менее стоек к диффузионному проникновению влаги, чем к воздействию жидкой воды, поэтому в особо влажных помещениях его поверхность дополнительно прикрывают слоем металлической фольги. При ее отсутствии часть водяных паров может проникать через слой материала и конденсироваться при снижении температуры, что отрицательно влияет на всю теплоизоляционную систему.

Химические свойства

К эксплуатационным параметрам материала, обуславливающим долговечность под действием внешних факторов, относятся:

  1. химическая устойчивость – пенополистирол невосприимчив ко многим веществам, кроме растворителей и кислот-окислителей. Смеси на основе ацетона, эфиров и легких углеводородов быстро растворяют пенопласт, не оставляя от него даже видимых следов. Со щелочами пенопласт умеренно устойчив, однако, специально подвергать их воздействию все же не стоит;
  2. температурная стойкость – пенопласт имеет низкую температурную границу разрушения. Уже при 60-70 °С из него начинают выделяться газы, являющиеся продуктами деструкции исходного полимера. При температуре выше 100 °С разложение полистирола происходит особенно интенсивно и сопровождается еще большим количеством токсичных выделений. Тяжелые последствия на организм могут наступить даже спустя несколько дней после их вдыхания.

Пожарная безопасность пенопласта двояко трактуется сторонниками и противниками материала. Первые утверждают про его высокую устойчивость к пламени, аргументируя это тем, что подожженный пенопласт практически не поддерживает огонь без постороннего источника тепла. Вторые сетуют на выделение большого количества газов при пожаре, вредных для человека. При объективном рассмотрении пенопласт – довольно горючее вещество, требующее правильного обращения при отделке зданий.

Видео: Пенопласт (пенополистирол, ППС, EPS). Преимущества и недостатки.

Биологические свойства пенопласта

Пенопласт относится к группе строительных материалов, которые не поддаются воздействию микроорганизмов. Из-за слабого водопоглощения на поверхности пенопласта очень медленно образуется плесень. Грибковые поражения пенополистирола можно наблюдать лишь в очень влажных помещениях с отсутствующей вентиляцией.

В отличие от бумаги или древесины, пенопласт не разрушается при появлении плесени, а ее налеты можно легко очистить с поверхности вручную. Деструкция утеплителя, наблюдаемая на протяжении длительного времени, связана не с биологическими факторами, а с действием ультрафиолета, тепла и кислорода воздуха.

Применение пенопласта в ремонте и строительстве

Благодаря невысокой стоимости, малой плотности и хорошим теплоизоляционным качествам, пенопласт используют во всех строительных сферах – от возведения капитальных стен до отделки помещений. Его часто рекомендуют в качестве утеплителя крыши и подкровельного пространства, уложенного снаружи и внутри здания. Чтобы получить действительно экологичную и безопасную постройку, к отделке пенопластом следует подходить с большим вниманием.

Способы использования пенополистирола:

  • обшивка наружной части стен. Внешний пенопластовый слой необходимо покрыть слоем штукатурки или другого прочного материала, чтобы избежать разрушения при механическом и солнечном воздействии;
  • отделка помещения изнутри. При возведении небольших домов часто используют метод несъемной опалубки, при котором промежуток между стенами из пенопластовых блоков заливается бетоном. Чтобы защитить жильцов в случае пожара, внутренний слой пенопласта нужно укрыть слоем штукатурки толщиной не менее 30 мм.
  • как прослойка между двумя стенами – используется в капитальном строительстве и является оптимальным строительным решением. Такие постройки не обладают выдающимися теплотехническими характеристиками, однако, температура в них зимой все же выше, чем в домах без пенопласта, а в жару внутренние поверхности стен нагреваются меньше. Подобное расположение более безопасно с пожарной точки зрения, поскольку даже при интенсивном возгорании прослойка не сможет воспламениться.
Видео: Утепление пенопластом фасад. Как выбрать пенопласт. Как выбрать сетку для пенопласта.

Совет: при использовании пенопласта внутри помещения через него не следует прокладывать трубы отопления и подвода горячей воды, а также электрическую проводку без металлического гофрирования. Локальные перегревы в местах контакта пенопласта с коммуникациями будут приводить к ускоренному разложению полистирола и выделению вредных паров.

Выводы: пенопласт – эффективный теплоизоляционный материал, обладающий стойкостью к влаге и не изменяющий своих характеристик при условии нормальной эксплуатации. Из-за слабой устойчивости пенополистирола к высоким температурам и чрезвычайной токсичности продуктов горения следует уделять особое внимание его защите негорючими и огнестойкими покрытиями. Пенопластовые утеплители лучше всего использовать для защиты внешней стороны стен и теплоизоляции в межстенном промежутке, чтобы исключить возможность их нагрева и разложения.

Пенопласт – характеристики и свойства утеплителя

Перед тем как приступить к теме статьи, рекомендуем вам почитать отрицательные отзывы о пенополистироле. Информация заставляет задуматься.

А теперь — к сути вопроса.

Сегодня мы продолжим разговор о таком материале, как пенополистирол. Ответим на вопрос, который возникает на этапе подсчета стоимости и количества необходимых материалов. А именно: какие бывают размеры листов пенопласта.

Действительно, зачем покупать первый попавшийся материал, а потом тратить дополнительное время на его подгонку, обрезку? Лучше сразу купить пенополистирол с оптимальными геометрическими характеристиками. Тем более что сегодня на рынке строительных материалов есть всё необходимое.

Итак…

Блок: 1/3 | Кол-во символов: 683
Источник: http://vyborstm.ru/penoplast-razmery-listov.html

Что это?

Шарики пенополистирола

Для начала ответим на вопрос, пе

Пенопласты - характеристики свойства и виды пенопласта | ПластЭксперт

Пенопласт. Основные понятия

Пенопласт – это разновидность композитного материала низкой плотности или пеноматериала, одним из компонентов которого является полимер, вторым компонентом – газ. Другими словами, пенопласт является наполненной газом пластической массой. Как правило, пенопласты, в отличие от поропластов, имеют строение в виде изолированных ячеек или отвердевших пен. Ячейки состоят из замкнутых полостей, которые не соединены между собой и в качестве разделителя имеют стенки полимерной матрицы. Отличие поропластов от пенопластов состоит в том, что первые обладают губчатой структурой (поры не изолированы). Система пор, связанных между собой, является главным признаком поропластов.

Отметим, что определение пенопластов и поропластов, данное выше, достаточно условно, т.к. во многих случаях в пенопласте значительное количество ячеек соединено между собой, а в поропласте может быть изолировано. На сто процентов можно говорить об изоляции лишь в том случае, если материал состоит из отдельных вспененных гранул, например популярный в строительстве пенопласт пенополистирол. Точнее будет называть пенопластом любой наполненный газом пластик, который был произведен вспениванием изначально вязко-текучей или жидкой композиции полимера с дальнейшим отверждением последней.

Производство вспененных пластмасс

Выпуск пенопластов в промышленных условиях заключается в том, что газ распределяется в полимере, который в данном случае является полуфабрикатом. Это может быть расплав, раствор, расплаве, дисперсия, жидкий олигомер и т.д. Либо в процессе производства газ не добавляется, а создаются условия для самостоятельного выделения необходимого объема газа в массе полимерного связующего. Это может происходить непосредственно в ходе синтеза или модификации исходного полимера, яркий пример такого материала – пенопласт ППУ (пенополиуретан).

Технологический процесс получения пенопластов использует разнообразные способы достижения эффекта вспенивания, их можно разделить на следующие виды:

  • нагнетание газа под давлением в полимерную систему;
  • добавление в полимерную систему химических агентов порофоров или газообразователей, которые при определенных условиях разлагаются с выделением газообразных соединений;
  • добавление веществ, которые выделяют газ в ходе химической реакции между собой или с другими компонентами системы;
  • перемешивание при помощи механических устройств в присутствии пенообразователей или так называемое «барботирование»;
  • введение в полимерную матрицу легко испаряющихся жидкостей, создающих газовую фазу при повышении температуры;
  • другие реже используемые операции.

Различные способы получения вспененной структуры позволяют варьировать свойства готовой продукции в зависимости от исходного состава системы и условий отверждения композиции. В частности, можно получить пенопласт более открытой или замкнутой структурой, разной плотности, различных размеров ячеек и т.п.

Производство пенопласта

Машины и оборудование для производства пенопластов делится на типы, которые зависят от метода получения конечного материала и технических характеристик начального полимера, предназначенного для вспенивания.

Виды пенопласта по методу производства. Экструдированный пенопласт, чаще всего встречается полиэтилен, производят из полимера вспениванием в цилиндре экструдера, либо в элементах формующей оснастки. Пенополистирол или ПСВ производится в виде бисерных гранул, содержащих легкокипящий пентан, которые затем для вспенивания обрабатываются горячим паром непосредственно в форме.

Уже упомянутый выше пенополиуретан получают и перерабатывают в изделия методом впрыска двухкомпонентной смеси на специальных заливочных машинах под давлением. Причем таким образом получают изделия и из мягкого (поролон) ППУ, и жесткого (изоляция труб, детали интерьера автомобиля), так называемого интегрального пенополиуретана. Компонентами для смеси являются полиол и изоцианат, реагирующие с выделением углекислого газа. Их химические особенности и соотношение при впрыске определяют свойства получаемых изделий. Смешение полиола и изоцианата из-за их высокой реакционной способности обычно происходит в головке высокого давления непосредственно перед впрыском в полость в формы.


Рис. 1 Мягкая мебель – основной рынок для эластичного ППУ (поролон).

Простейшие изделия из вспененных пластмасс можно получать и на стандартных машинах для переработки полимеров, например ТПА или экструзионных линиях. Для этого в состав композиции необходимо добавить специальные концентраты добавок веществ, разлагающихся в ходе техпроцесса, так называемых порофоров. Обычно при этом не достигается значительного вспенивания изделий, соответствующей экономии сырья и улучшения свойств готового продукта, однако на его поверхности могут появиться нежелательные следы выхода газа по полимерной массы – дефект «серебрения». Строго говоря, при этом методе получается слегка подвспененная монолитная деталь, а не пенопласт в классическом понимании.

Детали из поропластов можно также выпускать путем вымывания растворимого наполнителя из пластиковой заготовки. Другой редкий способ заключается в спекании порошкообразных пластмасс, причем он подходит и для других материалов, например некоторых металлов. Также пенопласт можно получать при конденсационном структурообразовании, возможного в растворах полимеров. Родственные пенопластам материалы получаются добавлением в полимерную матрицу полых наполнителей, заполненных газом, в том числе микрокапсул различной природы. Таким образом производят газонаполненные пластмассы.

Полимеры, пригодные для вспенивания, и вспениватели

Большинство известных полимеров вполне можно наполнять газами, получая пенопласт. При этом крупнотоннажные пенопласты промышленность производит в основном на основе полистирола (вспененный полистирол, ПСВ), полиэтилена (вспененный ПЭ), поливинилхлорида (пеноПВХ), полиуретанов (ППУ), полипропилена (вспененный ПП). Реже используются полиреактивные, как и ППУ, материал, например эпоксидные, карбамидные, фенольные смолы, а также кремнийорганические полимеры.

Главным образом, при вспенивании в промышленности применяются следующие газообразователи: имеющие в составе азот (азосоединения, нитросоединения, карбонат аммония и т.п.) и легкокипящие жидкости — изопентан, разновидности фреона, метиленхлорид.

Свойства изделий из пенопластов

Современная индустрия производит эластичные (мягкие) и жесткие (интегральные) пенопласты, имеющие ячейки размером 0,02—2 мм, максимум до 5 мм. Эти материалы обладают очень высокими теплоизоляционными и звукоизоляционными свойствами и очень низкой кажущейся плотностью (от 0,02 до 0,5 г/см2). Другие характеристики пенопластов, такие как механические и электрические свойства, газопроницаемость, водо- и химическая стойкость и т.п. зависят от химического состава и рецептуры изначальной полимерной системы и от метода производства и структуры изделия.

Детали из пенопласта, как правило, не нуждаются в дальнейшей постобработке. То есть количество отходов при производстве и эксплуатации таких изделий низкое. Этот факт вкупе с уже озвученными преимуществами делает пенопласт очень привлекательной для изготовителей изделий из пластиков.

Области применения пенопластовых изделий

Теплопроводность любых вспененных материалов очень низкая, что определяющих широкий спектр их применения в самых различных областях человеческой жизни.


Рис 2. Относительно новое применение пенопласта – одноразовые лотки для пищи.

Описываемые изделия широко применяются как утеплитель и звукоизоляционный материал в строительстве, теплоизоляции трубопроводов, в судостроении и самолётостроении, в машиностроении (изоляция холодильников и химических реакторов), автопроме и во многих других областях. Пенопласт применяют при производстве многослойных конструкций (сэндвич-панели), различных плавучих средств, изоляционных листов, амортизирующих прокладок. Широчайшую популярность завоевал вспененный полистирол в разнообразной таре и упаковки, в том числе для бытовой техники и электроники, а также в виде лотков для пищевых продуктов. Огромный объем производства эластичного пенополиуретана необходим для выпуска мягкой мебели, матрацев и зимней одежды. Срок эксплуатации таких изделий может достигать десятков лет.

Объявления о покупке и продаже оборудования можно посмотреть на         

Обсудить достоинства марок полимеров и их свойства можно на               

Зарегистрировать свою компанию в Каталоге предприятий

Что такое полистирол? | Факты об использовании, преимуществах и безопасности

Ответы на вопросы

Что организации здравоохранения говорят об упаковке из полистирола для пищевых продуктов?

Должностные лица общественного здравоохранения поощряют использование санитарной одноразовой упаковки для пищевых продуктов (такой как полистирол) в соответствующих условиях. Одноразовая упаковка для предприятий общественного питания может помочь уменьшить количество болезней пищевого происхождения в домах, больницах, школах, домах престарелых, кафетериях и ресторанах.

Что регулирующие органы говорят о безопасности упаковки из полистирола для пищевых продуктов?

В США FDA строго регулирует все упаковочные материалы для пищевых продуктов, включая полистирол. FDA на протяжении десятилетий заявляло, что полистирол безопасен для контакта с пищевыми продуктами. Европейская комиссия / Европейское агентство по безопасности пищевых продуктов и другие регулирующие органы пришли к аналогичным выводам.

Что говорят ученые о безопасности полистирольной упаковки для пищевых продуктов?

С 1999 по 2002 год международная группа экспертов из 12 человек, выбранная Гарвардским центром анализа рисков, провела всесторонний обзор потенциальных рисков для здоровья, связанных с воздействием стирола на рабочем месте и в окружающей среде.

Ученые проанализировали все опубликованные данные о количестве стирола, внесенного в рацион из-за миграции из упаковки, контактирующей с пищевыми продуктами. Ученые пришли к выводу, что нет причин для беспокойства из-за воздействия стирола из пищевых продуктов или из полистирола, используемого в приложениях, контактирующих с пищевыми продуктами, таких как упаковка и контейнеры для общественного питания.

Часто ли вещества из упаковки «переходят» в продукты питания?

Вся упаковка - стекло, алюминий, бумага и пластмассы (например, полистирол) - содержат вещества, которые в очень незначительных количествах могут «перемещаться» в продукты питания или напитки.Это одна из причин, почему FDA регулирует упаковку пищевых продуктов в первую очередь - чтобы быть уверенным в том, что количество веществ, которые могут действительно мигрировать, безопасно.

Данные испытаний, представленные FDA, показали, что миграция стирола из полистирольных продуктов для общественного питания незначительна и, как ожидается, будет значительно ниже пределов безопасности, установленных самим FDA - в 10 000 раз меньше допустимого уровня суточного потребления FDA.

Откуда стирол?

Стирол естественным образом содержится во многих продуктах питания и напитках.Его химическая структура похожа на коричный альдегид, химический компонент, придающий коричный аромат. Стирол также производится как строительный блок для материалов, используемых для изготовления автомобилей, электроники, лодок, транспортных средств для отдыха, игрушек и множества других потребительских товаров.

Как люди могут контактировать со стиролом?

Люди могут контактировать со стиролом из-за небольших количеств, которые могут присутствовать в воздухе (в основном из выхлопных газов автомобилей и сигаретного дыма), а также в пищевых продуктах и ​​упаковке.Стирол естественным образом присутствует во многих продуктах питания, таких как корица, говядина, кофейные зерна, арахис, пшеница, овес, клубника и персики. Кроме того, FDA одобрило стирол в качестве пищевой добавки - его можно добавлять в небольших количествах в выпечку, замороженные молочные продукты, конфеты, желатин, пудинги и другие продукты питания.

Из чего сделан пенополистирол?

Многие люди неправильно используют название STYROFOAM® для обозначения полистирола в сфере общественного питания; STYROFOAM® - зарегистрированная торговая марка компании Dow Chemical Company, которая относится к ее фирменным строительным материалам.

Для чего используется стирол?

Более 70 лет стирол использовался в качестве химического строительного блока для изготовления материалов, используемых в широком спектре готовых потребительских товаров, таких как контейнеры для пищевых продуктов, резиновые шины, изоляция зданий, ковровые покрытия и корпуса лодок, доски для серфинга, жилые дома. кухонные столешницы, ванны и душевые кабины.

В чем разница между стиролом и полистиролом?

Отличие в химии.Стирол - это жидкость, которая может быть химически связана с образованием полистирола, твердого пластика, который проявляет различные свойства. Полистирол используется для изготовления различных потребительских товаров, таких как контейнеры для предприятий общественного питания, прокладки для транспортировки хрупкой электроники и изоляция.

Что такое экструдированный пенополистирол?

Экструдированный пенополистирол (XPS) - это жесткая изоляция, которая также образована из полистирольного полимера, но произведена с использованием процесса экструзии.Этот тип изоляции может значительно снизить потребление энергии зданием и помочь контролировать температуру в помещении.

.

Эффект металлического медного порошка

Твердые полимерные композиты (SPC) были приготовлены методом литья из раствора. Оптические свойства полистирола, легированного медным порошком, были определены методом UV-Vis. Оптические константы были рассчитаны с помощью спектроскопии в УФ-видимом диапазоне. Области дисперсии наблюдались как в спектрах поглощения, так и в спектрах показателя преломления на более низких длинах волн. Однако на больших длинах волн может наблюдаться плато. Небольшой коэффициент экстинкции по сравнению с показателем преломления свидетельствует о прозрачности композитных образцов.Показатель преломления и оптическая ширина запрещенной зоны определялись из данных коэффициента отражения и оптического поглощения соответственно. Определен характер электронного перехода из валентной зоны в зону проводимости и оценены запрещенные зоны твердых композитных образцов. Было замечено, что при добавлении концентрации Cu показатель преломления увеличивался, а энергетические щели уменьшались. Рассчитанные показатели преломления (низкий показатель преломления) образцов показывают их доступность в волноводной технике.

1. Введение

В последние годы мы стали свидетелями постоянного поиска материалов с высокой диэлектрической проницаемостью, которые имеют широкий спектр технологически важных приложений, таких как микроэлектроника, встроенные пассивные и электрострикционные устройства. Большинство электронных компонентов в микроэлектронных схемах пассивны и занимают более 80% площади печатной проводной поверхности [1]. Дисперсия электропроводящей фазы в изолирующей полимерной матрице влияет на общие характеристики гетерогенной системы.Сообщалось, что если диспергированная металлическая частица находится в достаточном количестве, образуется проводящий или полупроводящий композит. Интересные свойства таких систем делают их технологически важными и конкурентоспособными по сравнению с другими альтернативными материалами благодаря их экономической эффективности [2]. Электропроводящие полимерные композиты необходимы для приложений, связанных с защитой от электромагнитных помех (EMI), защитой от радиочастотных помех (RFI) и рассеиванием электростатических зарядов (ESD).Полимерные композиты используются в качестве электропроводных клеев и элементов схем в микроэлектронике и, как сообщается, обладают антикоррозийными свойствами в качестве покрытий металлических компонентов [3]. Многие типы полимерных композитов были изучены с целью разработки системы с высокой проводимостью. Сюда входят матрица из эпоксидной смолы с частицами железа [2], полиэтилен высокой плотности (HDPE) с многослойными углеродными нанотрубками (MWNT) [4], поли (п-фениленвинилен) (PPV) -TiO 2 [5] и поливинилиденфторид (PVDF) с многослойной углеродной нанотрубкой (MWCNT) [6].Текущие исследования показывают важность измерения и понимания оптических свойств материалов. Возникновение электронных переходов в структуре материалов напрямую связано с энергией фотонов. Природа наивысшей занятой молекулярной орбитали (ВЗМО) и самой низкой незанятой молекулярной орбитали (НСМО) линейных и циклических алканов была понята посредством изучения края поглощения и показателя преломления [7]. Неполярные полимеры имеют самую низкую диэлектрическую проницаемость среди всех известных твердых полимеров, и это делает их привлекательными для требовательных приложений электроники.По словам Янга и др., Полимеры с самым низким показателем преломления очень подходят в качестве оболочек с низким показателем преломления для волноводов [8]. Оптические характеристики тонких пленок дают информацию о некоторых важных физических свойствах, таких как ширина запрещенной зоны и структура зон, а также роль дефектов, и поэтому могут представлять постоянный интерес для нескольких различных приложений. Широко используемый метод огибающей был разработан для измерения коэффициента пропускания для оценки показателя преломления, коэффициента экстинкции и коэффициента поглощения [9].Обширный и интенсивный обзор литературы показывает, что по оптическому анализу полимеров, содержащих металлические частицы, сделано очень мало. Таким образом, целью данной работы является исследование оптических параметров полимерных композитов на основе системы полистирол-медь.

2. Детали эксперимента
2.1. Подготовка образца

Полистирол (поставленный Sigma) и медные порошки от sigma (с размерами микрон) были использованы в качестве сырья в этой работе для приготовления твердых полимерных композитов (SPC) с использованием технологии литья из раствора.Для этого 1 г полистирола растворяли в 25 мл раствора толуола. Смесь непрерывно перемешивали магнитной мешалкой в ​​течение нескольких часов при комнатной температуре до полного растворения полистирола. В то время как вышеупомянутые системы все еще находились в жидком состоянии, для изготовления твердых композитных образцов были добавлены различные количества медного порошка. Содержание медного порошка в приготовленных образцах варьировалось от 0 мас.% До 6 мас.% По объему, и смеси непрерывно перемешивали до получения гомогенных растворов.Затем растворы разливали в различные чистые и сухие стеклянные чашки Петри и давали испариться при комнатной температуре до получения пленок без растворителя. Пленки хранили в эксикаторах с силикагелевым осушителем для дальнейшей сушки. В таблице 1 приведены концентрации приготовленных образцов.


Обозначение полистирол (г) Порошок меди (мас.%) Порошок меди (г)

SPC 1 1.0 0,0 0,0000
SPC 2 1,0 1,0 0,0101
SPC 3 1,0 2,0 0,0204
4 SPC 1,0 3,0 0,0309
SPC 5 1,0 5,06 0,0626

2.2. Измерение в УФ-видимой области

. УФ-видимые спектры твердых полимерных композитов на основе полистирола были записаны с использованием УФ-видимых спектров (модель: лямбда 25) в режиме поглощения. Для расчета пропускания, коэффициента поглощения, коэффициента экстинкции и показателя преломления было выполнено оптическое исследование композитов полистирол-Cu () путем анализа спектров поглощения следующим образом [7, 9–11]: где - количество света, прошедшего через образец, - оптическое поглощение (основание 10) образца, - коэффициент поглощения, - толщина образца, - длина волны, - это коэффициент экстинкции.- коэффициент отражения образца, который используется для оценки показателя преломления. Уравнение (2) действительно для материалов с малыми потерями, то есть с малым коэффициентом экстинкции. Коэффициент оптического поглощения был использован для определения ширины запрещенной зоны твердых полимерных композитов, что является наиболее прямым и простым методом, с использованием следующего соотношения [12]: где - не зависящая от энергии константа, - ширина запрещенной зоны в оптическом диапазоне, - константа, определяющая характер оптического перехода из валентной зоны в зону проводимости (фундаментальное поглощение).Характер перехода можно определить, определив значение, равное 1/2 и 2, соответственно, для разрешенных прямых и непрямых переходов.

3. Результаты и обсуждение

Спектры оптического поглощения и пропускания могут дать некоторое представление об оптических свойствах образцов. На рисунках 1 и 2 показаны спектры поглощения и пропускания для всех образцов соответственно. Можно заметить, что при добавлении порошков меди абсорбция очень быстро увеличивается при 6 мас.%, а коэффициент пропускания уменьшился. Очевидно, что спектры поглощения и пропускания образцов (рис. 1 и 2) с длиной волны резкие, т. Е. Неэкспоненциальные. Резкое изменение оптической плотности и пропускания в зависимости от длины волны для всех образцов указывает на кристаллическую природу образцов [13]. Согласно этим результатам зависимость коэффициента поглощения от энергии фотона (эВ) должна быть неэкспоненциальной.



На рисунках 3 и 4 показаны зависимости показателей преломления и экстинкции от длины волны.Видно, что показатели преломления образцов больше, чем их коэффициенты экстинкции. Небольшой коэффициент экстинкции ( 10 −5 ) указывает на то, что составные образцы все еще очень прозрачны [14]. Исследование показателя преломления и коэффициента экстинкции для работы оптических систем имеет важное значение. Показатель преломления имеет решающее значение для согласования или оптимизации числовой апертуры (NA) уменьшающей оптической системы во всех точках оптического пути.Коэффициент экстинкции имеет решающее значение для определения оптических потерь в системе [15]. Коэффициент экстинкции - это доля электромагнитной энергии, потерянной из-за рассеяния и поглощения на единицу толщины в конкретной среде. Изменение значений и в зависимости от длины волны показывает, что между фотонами и электронами происходит некоторое взаимодействие. Увеличение коэффициента экстинкции на высоких длинах волн (рис. 4) связано с более высокой концентрацией медных порошков (от 2 до 6 мас.% Порошка Cu), и, таким образом, большее рассеяние фотонов происходит с добавленным порошком Cu.Изменение показателя преломления и коэффициента экстинкции с длиной волны падающего светового пучка происходит из-за вышеупомянутых взаимодействий [16].



Можно видеть, что показатель преломления (рис. 3) увеличивается с увеличением медного порошка, то есть показатель преломления композитных образцов регулируется при добавлении концентрации медного порошка. Область высокой длины волны показателя преломления представляет свойство материала (объемное) и почти не зависит от длины волны, как показано на рисунке 5.Внезапное увеличение показателя преломления на 6 мас.% Может быть связано с явлениями порога перколяции. Хорошо известно, что когда содержание проводящих частиц достигает критического значения, то есть порога перколяции, из этих проводящих частиц может образовываться непрерывная сетка, что увеличивает кристалличность [17]. Резкое поведение энергии фотонов в зависимости от более высокой концентрации порошка Cu может полностью подтвердить преобладание кристаллической части в образцах, как можно увидеть в последующих разделах.


Из исследования показателя преломления (рис. 5) в этой работе мы пришли к выводу, что запрещенная зона образцов может измениться при добавлении медного порошка. Это можно лучше понять, изучив ширину запрещенной зоны и показатель преломления как функцию концентрации меди. Для этого график зависимости коэффициента поглощения от энергии фотона позволяет рассчитать ширину запрещенной зоны. Чтобы показать влияние медного порошка на оптическую ширину запрещенной зоны твердых полимерных композитных пленок, для всех образцов исследовали край оптического поглощения.На рисунках 6 (а) –6 (д) показаны зависимости от vs для всех образцов. Приемлемый край поглощения, показанный всеми образцами, свидетельствует о преобладании кристаллической природы образцов [18]. Очевидно, что край поглощения смещался в сторону более низкой энергии при добавлении порошка Cu, особенно при 6 мас.% Cu. Эти результаты подтверждают тот факт, что ширина запрещенной зоны и показатель преломления сильно коррелированы.

Прямые энергетические запрещенные зоны для всех образцов были определены по пересечению пунктирных линий на оси энергии фотонов на рисунках 6 (a) –6 (e) и построены как функция концентрации меди, как показано на рисунке 7.Очевидно, что ширина запрещенной зоны резко уменьшается при 6 мас.% Порошка Cu. Одна из возможных интерпретаций этого экспериментального наблюдения заключается в том, что порошок Cu вводит множественные валентные состояния в структуру полистирола и, таким образом, уменьшает ширину запрещенной зоны между валентной зоной и зоной проводимости.


Изменение показателя преломления как функция концентрации меди позволяет нам понять поведение изменения запрещенной зоны в зависимости от концентрации меди.На рис. 8 показана зависимость показателя преломления для медного порошка, рассчитанного из пересечения плато на рис. 5 с осью α. Ясно, что ширина запрещенной зоны (рис. 7) и показатель преломления (рис. 8) соответствуют той же тенденции, но по-разному. Сообщалось, что оптические свойства (показатель преломления и запрещенная зона) материала связаны с изменением состава материала и расположения атомов [19]. Малое значение показателей преломления (1.2–2,18), полученные в настоящей работе, показывают, что полимерные композиты на основе ПК очень подходят в качестве низкоиндексных оболочек для волноводов [8].


4. Заключение

Область дисперсии как по показателям поглощения, так и по показателям преломления на более низкой длине волны может быть отнесена к достаточному времени для поляризации с компонентом электрического поля электромагнитного света. Плато показателей поглощения и преломления на высоких длинах волн может быть связано с инерцией боковых групп полистирола, что затруднено при изменении электрического поля.Расчетные значения ширины запрещенной зоны твердых композитных образцов показывают, что по природе электронный переход из валентной зоны в зону проводимости является прямым переходом. При добавлении концентрации Cu показатель преломления увеличился с 1,2 до 2,1, а запрещенная зона уменьшилась с 4,05 до примерно 3,65 эВ в результате введения большего количества множественных состояний. Небольшие показатели преломления композитов на основе ПК указывают на их важность для применения в волноводах. Эта работа подтверждает, что показатель преломления и запрещенная зона сильно коррелированы.

Благодарность

Авторы выражают благодарность Министерству высшего образования и научных исследований, Региональному правительству Курдистана, Университету Сулеймани за финансовую поддержку.

Авторские права

Авторские права © 2013 Шуджахадин Б. Азиз и др. Это статья в открытом доступе, распространяемая по лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы.

.

7 типов пластика, которые вам нужно знать - Waste4Change

Пластмасса не так проста, как вы думаете. Каждый из них отличается от других. Некоторые из них можно использовать повторно, другие производят опасные материалы после нескольких применений. Некоторые из них легко перерабатываются, другие требуют более сложного и сложного обращения в процессе переработки.

Возьмите ближайший к вам пластиковый продукт, может быть, коробку для завтрака, которую вы принесли из дома, бутылку с водой, чашку для лапши быстрого приготовления. Внимательно изучите, и вы можете найти число на его задней или нижней стороне.Вы, наверное, уже знаете, что это такое. Цифра указывает на тип пластика, из которого сделан продукт, который вы держите в руках. Но знаете ли вы точно, какого числа вам следует избегать, и какое число имеет наибольший шанс нанести ущерб окружающей среде?

7 кодов пластиковых смол

Подводя итог, в наши дни существует 7 типов пластика:

1 - Полиэтилентерефталат (ПЭТ, ПЭТ или полиэстер)

ПЭТ-бутылок - Источник: журнал Mold and Die World

ПЭТ также известен как волокно без складок.Он отличается от полиэтиленового пакета, который мы обычно видим в супермаркете. ПЭТ в основном используется для упаковки продуктов питания и напитков из-за его сильной способности предотвращать попадание кислорода внутрь и портить продукт внутри. Это также помогает удерживать углекислый газ из газированных напитков.

Хотя ПЭТ, скорее всего, утилизируется программами переработки, этот тип пластика содержит триоксид сурьмы - вещество, которое считается канцерогеном, - способным вызывать рак в живых тканях.Чем дольше жидкость остается в контейнере из ПЭТ, тем выше вероятность выделения сурьмы. Высокая температура внутри автомобилей, гаражей и закрытых складских помещений также может увеличить выброс опасных веществ.

2 - Полиэтилен высокой плотности (HDPE)

HDPE - Источник: Plastic Today

Совершенно особенный по сравнению с другими типами, HDPE имеет длинные практически неразветвленные полимерные цепи, что делает их действительно плотными и, следовательно, более прочными и толстыми по сравнению с PET.HDPE обычно используется в качестве продуктового пакета, непрозрачного молока, контейнера для сока, бутылок для шампуня и бутылочек с лекарствами.

Не только пригодный для вторичной переработки, ПЭВП относительно более стабилен, чем ПЭТ. Он считается более безопасным вариантом для употребления в пищу и напитки, хотя некоторые исследования показали, что он может выщелачивать химические добавки, имитирующие эстроген, которые могут нарушить гормональную систему человека при воздействии ультрафиолета.

3 - поливинилхлорид (ПВХ)

ПВХ - Источник: Green & Growing ПВХ

обычно используется в игрушках, блистерной упаковке, пищевой пленке, бутылках с моющими средствами, папках с вкладными листами, пакетах для крови и медицинских трубках.ПВХ или винил были вторыми по распространенности пластиковыми смолами в мире (после полиэтилена) до того, как процесс производства и утилизации ПВХ был объявлен причиной серьезных рисков для здоровья и проблем загрязнения окружающей среды.

По токсичности ПВХ считается наиболее опасным пластиком. Его использование может привести к выщелачиванию различных токсичных химикатов, таких как бисфенол А (BPA), фталаты, свинец, диоксины, ртуть и кадмий. Некоторые из упомянутых химических веществ могут вызывать рак; он также может вызывать аллергические симптомы у детей и нарушать гормональную систему человека.PVS также редко принимается программами утилизации. Вот почему лучше избегать использования ПВХ любой ценой.

4 - Полиэтилен низкой плотности (LDPE)

LDPE пластик - Источник: Polymer Solutions

Как было сказано ранее, полиэтилены - это наиболее часто используемое семейство пластмасс в мире. Этот тип пластика имеет простейшую химическую структуру пластикового полимера, что делает его очень простым и дешевым в обработке. Полимеры LDPE имеют значительное разветвление цепи, включая длинные боковые цепи, что делает его менее плотным и менее кристаллическим (структурно упорядоченным) и, таким образом, в целом более тонкую и гибкую форму полиэтилена.

LDPE в основном используется для изготовления пакетов (продуктовые, химчистка, хлеб, пакеты для замороженных продуктов, газет, мусора), полиэтиленовых пакетов; покрытия для бумажных пакетов с молоком и стаканчиков для горячих и холодных напитков; несколько выдавливаемых бутылок (мед, горчица), контейнеры для хранения продуктов, крышки контейнеров. Также используется для покрытия проводов и кабелей.

Хотя некоторые исследования показали, что LDPE также может вызывать вредные гормональные эффекты у людей, LDPE считается более безопасным вариантом пластика для употребления в пищу и напитки.К сожалению, этот вид пластика довольно сложно переработать.

5 - Полипропилен (ПП)

PP platic - Источник: Chemical News

Более жесткий и устойчивый к нагреванию полипропилен широко используется для изготовления контейнеров для горячей пищи. По качеству прочности он находится где-то между ПВД и ПНД. Помимо тепловых жилетов и автомобильных запчастей, полипропилен также входит в состав одноразовых подгузников и гигиенических прокладок.

Как и ПВД, ПП считается более безопасным вариантом пластика для еды и напитков.И хотя он обладает всеми этими удивительными качествами, полипропилен не совсем пригоден для вторичной переработки и также может вызвать астму и нарушение гормонов у человека.

6 - Полистирол (ПС)

Полистирол / пенополистирол

Полистирол - это пенополистирол, который мы все обычно используем для пищевых контейнеров, картонных коробок для яиц, одноразовых чашек и мисок, упаковки, а также для велосипедных шлемов. При контакте с горячей и масляной пищей PS может выщелачивать стирол, который считается токсичным для мозга и нервной системы, он также может влиять на гены, легкие, печень и иммунную систему.Помимо всех этих рисков, PS имеет низкую степень переработки.

7 - прочие

Номер 7 предназначен для всех пластмасс, кроме тех, которые обозначены номерами 1-6, а также пластмасс, которые могут быть наслоены или смешаны с другими типами пластмасс, такими как биопластики. Поликарбонат (ПК) является наиболее распространенным пластиком в этой категории, в последние годы его не так часто используют из-за того, что он связан с бисфенолом А (BPA). ПК также известен под разными названиями: Lexan, Makrolon и Makroclear.По иронии судьбы, ПК обычно используется для детских бутылочек, стаканчиков-поильников, бутылочек с водой, галлона воды, металлических вкладышей для пищевых консервов, контейнеров для кетчупа и зубных герметиков. Из-за его токсичности несколько стран запретили использование ПК для упаковки детских бутылочек и детских смесей.

BPA, содержащийся в ПК, был связан с многочисленными проблемами со здоровьем, включая повреждение хромосом в женских яичниках, снижение выработки спермы у мужчин, раннее начало полового созревания, различные изменения в поведении, изменение иммунной функции, изменение пола у лягушек, нарушение мозговых и неврологических функций , повреждение сердечно-сосудистой системы, диабет у взрослых (тип II), ожирение, устойчивость к химиотерапии, повышенный риск рака груди, рака простаты, бесплодия и метаболических нарушений.

Кроме того, из-за очень низкого качества повторного использования ПК следует избегать любой ценой.

3 Важные вещи!

Запоминание всех этих 7 различных типов пластика может быть трудным, поэтому вот несколько ключевых моментов, которые вам необходимо запомнить:

  1. Несмотря на то, что он различается в зависимости от типа, каждая категория пластика может выщелачивать опасные материалы в экстремальной ситуации, например, при сильной жаре.
  2. 3 типа пластика, которые считаются более безопасными среди прочих, - это полиэтилентерефталат (ПЭТ), полиэтилен высокой плотности (2-HDPE) и полипропилен (5-PP).
  3. Хотя эксперты в настоящее время работают над изобретением наилучшего метода и стратегии переработки всех этих типов пластика, программы переработки в основном собирают 2 типа пластика: полиэтилентерефталат (1-ПЭТ) и пластик высокой плотности. Полиэтилен (2-HDPE).

Мы надеемся, что теперь вы знаете, какой тип пластика вы хотите использовать в качестве контейнеров для еды и напитков и от какого пластика лучше отказаться из-за его низкого качества переработки. Не забывайте ответственно разделять отходы.Не смешивайте органические вещества с неорганическими; отделите стекло от бумаги и пластика. Это поможет с переработкой!

.

Сила цели бренда

Последний глобальный опрос почти 30 000 потребителей в 35 странах, в том числе более 2 000 потребителей в США, проведенный Accenture Strategy, показал, что 62 процента из них хотят, чтобы компании занимали позицию по текущим и широко актуальным вопросам, таким как устойчивость, прозрачность и справедливость. практика найма.

Компании, которые не согласны с убеждениями клиентов, расплачиваются за это.

Ожидания потребителей от брендов, соответствующих их личным ценностям, являются проблемой для компаний.Но эти ожидания также предоставляют компаниям возможность продемонстрировать конкурентоспособность, выстраивая более аутентичные и прибыльные отношения с клиентами.

Целевые компании повышают конкурентоспособность

Чтобы лучше понять важность цели бренда для конкурентоспособности американских компаний, Accenture Strategy провела исследование убеждений и ожиданий более 5000 городских потребителей в 11 городах США.

Нажмите на маркер, чтобы увидеть инфографику по городу:

.

Цель бренда: полное руководство [+ 21 пример}

Цель бренда - уже не новая тема.

Это стало предметом споров в течение многих лет и в некоторых кругах даже воспринимается как «ругательное слово».

Это выполнено мастерски, неправильно использовано и даже злоупотреблено брендами , которые хотят использовать его преимущества без всяких заслуг.

Но, несмотря на то, что многие считали, что это маркетинговая прихоть, благодаря ей некоторые бренды стали «знаковыми».

Это не просто очередная статья о «Назначении бренда»,

Это все, что вам нужно знать о цели бренда как стратегии брендинга.

Используя исследования, статистику, примеры и визуальные эффекты, мы раз и навсегда разбиваем цель бренда:

Мы выделяем пионеров , фальшивок , вдохновляющих успехов и смущающих неудач .

Вы поймете, почему цель бренда никуда не денется, и дадите вам пошаговый план реализации , чтобы вы могли понять, обнаружить, выработать стратегию и реализовать цель в своем бренде.

.

Общие свойства приложения

отладка

ложь

Включить журналы отладки.

инф. *

Произвольные свойства для добавления к информационной конечной точке.

logging.charset.console

Набор символов для вывода на консоль.

ведение журнала.charset.file

Набор символов для вывода в файл.

logging.config

Расположение файла конфигурации ведения журнала. Например, `classpath: logback.xml` для Logback.

logging.exception-convert-word

% wEx

Слово преобразования, используемое при регистрации исключений.

ведение журнала.имя файла

Имя файла журнала (например, `myapp.log`). Имена могут быть точными или относительными к текущему каталогу.

logging.file.path

Местоположение файла журнала. Например, `/ var / log`.

группа регистрации. *

Группы журналов для быстрой смены нескольких логгеров одновременно. Например, `logging.group.db = org.hibernate, org.springframework.jdbc`.

уровень регистрации *

Сопоставление серьезности уровней журнала. Например, `logging.level.org.springframework = DEBUG`.

logging.logback.rollingpolicy.clean-history-on-start

ложь

Следует ли очищать файлы журнала архива при запуске.

ведение журнала.logback.rollingpolicy.file-name-pattern

$ {LOG_FILE}.% D {yyyy-MM-dd}.% I.gz

Шаблон для повторяющихся имен файлов журнала.

logging.logback.rollingpolicy.max-размер-файла

10 МБ

Максимальный размер файла журнала.

logging.logback.rollingpolicy.max-history

7.0

Максимальное количество дней хранения файлов архивных журналов.

logging.logback.rollingpolicy.total-size-cap

0B

Общий размер сохраняемых резервных копий журналов.

logging.pattern.console

% clr (% d {$ {LOG_DATEFORMAT_PATTERN: -yyyy-MM-dd HH: mm: ss.SSS}}) {слабый}% clr ($ {LOG_LEVEL_PATTERN: -% 5p})% clr ($ {PID : -}) {пурпурный}% clr (---) {бледный}% clr ([% 15.15t]) {слабый}% clr (% - 40.40logger {39}) {голубой}% clr (:) {слабый}% m% n $ {LOG_EXCEPTION_CONVERSION_WORD: -% wEx}

Шаблон Appender для вывода на консоль. Поддерживается только с настройкой Logback по умолчанию.

logging.pattern.dateformat

гггг-ММ-дд ЧЧ: мм: сс.SSS

Шаблон Appender для формата даты журнала. Поддерживается только с настройкой Logback по умолчанию.

ведение журнала.pattern.file

% d {$ {LOG_DATEFORMAT_PATTERN: -yyyy-MM-dd HH: mm: ss.SSS}} $ {LOG_LEVEL_PATTERN: -% 5p} $ {PID: -} --- [% t]% -40.40logger {39}:% m% n $ {LOG_EXCEPTION_CONVERSION_WORD: -% wEx}

Шаблон Appender для вывода в файл. Поддерживается только с настройкой Logback по умолчанию.

уровень регистрации. Шаблон

% 5п

Шаблон Appender для уровня журнала.Поддерживается только с настройкой Logback по умолчанию.

logging.register-shutdown-hook

ложь

Зарегистрируйте ловушку выключения для системы регистрации при ее инициализации.

пружина.aop.auto

правда

Добавить @EnableAspectJAutoProxy.

пружина.aop.proxy-target-class

правда

Должны ли создаваться прокси на основе подклассов (CGLIB) (true), в отличие от стандартных прокси на основе интерфейса Java (false).

Пружина.приложение.админ.активировано

ложь

Следует ли включать функции администратора для приложения.

пружина.application.admin.jmx-name

org.springframework.boot: type = Admin, name = SpringApplication

JMX-имя MBean-компонента администратора приложения.

пружина.приложение.наименование

Название приложения.

.

Смотрите также