Монолитное перекрытие безбалочное


Безбалочные перекрытия из монолитного железобетона - СамСтрой

Довольно часто вместо традиционных заводских плит в конструкциях зданий применяются без балочные перекрытия из монолитного железобетона – пространственные бетонные системы, опирающиеся на стены или колонны. В этой статье мы подробно рассмотрим существующие виды таких конструкций, их конструктивные особенности, зависимость возможных изломов от нагрузок при опирании на вертикальные опоры и другие вопросы.


Основные виды и особенности бетонных перекрытий

Итак, монолитные безбалочные железобетонные перекрытия по способу опирания мы разделим на несколько видов – с опорой на стены и на колонны.

Горизонтальные несущие конструкции, опирающиеся на колонны, называются кессонными. Они применяются в основном для перекрытия административных, коммерческих и общественных зданий каркасного типа. Широким спросом пользуются в европейских странах, но и в России используются нередко. В частном индивидуальном строительстве подобные системы не применяются.

Горизонтальная несущая конструкция кессонного типа


Железобетонные перекрытия с опиранием на стены можно условно разделить на такие типы:

  • Монолитные – представляют собой цельнолитые бетонные конструкции, сооружаемые по всему периметру здания.
Конструкция монолитной плиты
  • Сборно-монолитные (СМП) – больше относятся к категории балочных конструкций, так как выкладка блоков-вкладышей производится на специальные балки. Однако при этом сооруженная система служит несъемной опалубкой, а основная жесткость и несущая способность перекрытия обеспечивается за счет последующего армирования и бетонирования пустот между рядами блочных элементов и слоя толщиной 50 мм поверх них.Конструкция сборно-монолитного перекрытия


    СМП

Конструктивно сборно-монолитное перекрытие состоит из таких элементов:

  • Балки – раскладываются между 2-мя стенами с определенным шагом в соответствии с типоразмером блоков-вкладышей.
  • Блоки-вкладыши – выкладываются между балками с плотным примыканием друг к другу.

Балки и блоки-вкладыши формируются несъемную опалубку, которая впоследствии армируется и бетонируется. За счет наличия армирующего каркаса и заливки бетоном пространства между рядами блочных элементов и формирования бетонного слоя толщиной 50 мм по всей площади перекрытия обеспечивается повышенная прочность и жесткость конструкции.

Процесс формирования несъемной опалубки из балок и блоков-вкладышей

Данная технология чаще применяется в индивидуальном строительстве. Более подробно особенности работ с использованием керамических блоков вкладышей рассмотрены в следующем видео:

Состав и функции блоков-вкладышей

Сегодня производители предлагают большой выбор блоков-вкладышей для сборно-монолитных перекрытий:

Основная функция блоков-вкладышей – формирование сплошной конструкции по всей площади для качественного бетонирования перекрытия.

Кессонное перекрытие

Кессонные безбалочные перекрытия представляют собой ребристые монолитные конструкции с взаимно перпендикулярными ребрами снизу, опирающиеся на колонны с капителями. Основная особенность подобных систем заключается в том, что бетон сосредотачивается в участках сжатия (ребра жесткости) и удаляется из зоны растяжения. Это позволяет сэкономить на растворе и одновременно с этим получить систему с повышенной жесткостью. Конструктивно они напоминают ребристые плиты перекрытия, которые производятся в заводских условиях.

Кессонное перекрытие с круглыми колоннами

Проектирование монолитного безбалочного перекрытия выполняется с прямоугольной либо квадратно сеткой колонн. При этом по контуру строения конструкция может опираться на несущие стены и/или контурные обвязки и даже консольно выступать за капители крайних колонн. Капитель – это венчающая часть, необходимая для создания достаточной жесткости в месте сопряжения плиты с колонной и обеспечения прочности монолита на продавливание.

Конструкция и формы кессона

Сооружение выполняется с использованием пластмассовых кессонообразователей – специальных форм размерами 740х800 мм, высотой 200-400 мм и с наклоном боковых граней до 18°. Их раскладывают на небольшом расстоянии друг от друга (по осям 800х800 мм) с целью образования полостей для бетонирования монолитных ребер. В результате ребра получаются толщиной 200-400 мм, а сплошная часть конструкции – 50-60 мм.

Раскладка кессонообразователей

Армирующая сетка в конструкции кессонов располагается поверх опалубки. Но особое внимание уделяется армированию утолщенных участков монолитного перекрытия – для этого обычно используется предварительно напряженная арматура большего, чем для горизонтальной сетки, сечения.

Армирование кессонной конструкции

Для правильного устройства кессонной конструкции применяется специальная опалубка, состоящая из металлических обрешеток и вертикальных стоек. Их монтируют с учетом размеров кессонообразователей, которые впоследствии укладываются поверх обрешетки. Бетон к пластику не прилипает, поэтому формы после застывания бетонной конструкции удаляются легко.

Какие нагрузки наиболее значимые?

Безбалочное монолитное перекрытие кессонного типа рассчитывается по методу предельного равновесия. На практике определено, что самыми опасными для конструкций этого вида являются следующие нагрузки:

Благодаря рамной конструкции, применение кессонных перекрытий обеспечивает возможность значительного уменьшения кубатуры здания, а значит и стоимости его строительства. Наиболее выгодным считается их обустройство на промышленных, гражданских и административных объектах. С их помощью перекрываются пролеты длиной до 6 м, а несущая способность рамных систем составляет до 500 кг/м2.

Финансовые затраты на устройство минимизируются благодаря экономному расходу бетона. Также это отражается на трудоемкости и скорости сооружения. Однако при проектировании таких систем важно учитывать, что в местах расположения колонн и капителей перекрытие должно быть сплошным – т.е. кессонообразователи на этих участках не устанавливаются.

Процесс бетонирования кессонного перекрытия

Расчет затрат на монолитное перекрытие этого типа выполняется с учетом расхода необходимых материалов и приспособлений:

  • Опалубка из металлических обрешеток и опорных стоек, а также пластмассовые кессонообразователи – в большинстве случаев арендуются.
  • Бетон – обычно заказывается «миксер» с бетононасосом для автоматической подачи смеси на перекрытие.
  • Арматура для армирования.

Однако учитывайте и то, что от дополнительных и непредвиденных расходов никто не застрахован

Безбалочные сборно-монолитные перекрытия - RMNT

Строительство с применением железобетонных конструкций характеризуется обилием инженерных решений, принцип работы и особенности которых понятны лишь специалистам от архитектуры и строительного проектирования. Наш ликбез исправит эту оплошность, поведав читателям о технологии безбалочных сборно-монолитные перекрытий (ББСМП).

Устройство и характерные особенности

Как и прочие виды сборно-монолитных конструкций, безбалочные перекрытия имеют чёткое разделение функций монолитной и сборной части общего железобетонного массива. Общая характерная черта — использование ЖБИ фабричного производства в качестве некоего подобия опалубки, элементы которой после замоноличивания объединяются для более эффективного восприятия нагрузок и воздействий.

Чтобы понять разницу между безбалочными и балочными перекрытиями, не будет лишним познакомиться с физической моделью работы последних. Основным несущим элементом в них выступает система однонаправленных или поперечно-направленных балок, опирающихся на вертикальные колонны. На сами балки укладываются железобетонные плиты или доски, таким образом, зона восприятия нагрузок увеличивается благодаря опиранию по всей протяжённости короткой стороны ЖБИ.

Безбалочные перекрытия отличаются тем, что вместо балок в них используются надколонные панели, на которые поперёк уложены межпролётные панели.

Каждая из колонн в таких случаях имеет расширение в верхней части, называемое капителью, функциональным назначением которой служит увеличение пятна контакта между сборными элементами конструкции. Монолитная часть перекрытия может включать как общий железобетонный покров, так и специальные шпонки, предназначенные для обездвиживания панелей и их жёсткого скрепления с капителями колонн.

Характерное отличие ББСМП заключается в отказе от опирания на несущие внутренние стены, панели передают нагрузку только на ограждающие конструкции. Центральная часть перекрытия поддерживается равнопролётной сеткой колонн. Это достаточно сложная система, функции которой наиболее ярко выражаются при использовании совместимых ЖБИ одного производителя, конструкцией которых предусмотрено достаточное число и верное расположение технологических уступов и шпунтов. Также безбалочные системы примечательны тем, что это один из немногих типов железобетонных конструкций, в которых соединение арматурных каркасов изделий выполняется сваркой.

Назначение безбалочных перекрытий

Сложность устройства ББСМП окупается более рациональным использованием объёма помещения нижних этажей при сопоставимой конструкционной прочности. Потолок избавлен от системы ребер, препятствующих свободному проведению инженерных коммуникаций и затрудняющих отделку.

Конструктивные решения по части безбалочных перекрытий с межпролетным расстоянием до 6 метров в обоих направлениях достаточно подробно изучены и описаны. Однако применение таких конструкций в гражданском строительстве сильно ограничено ненадобностью сооружения помещений столь значительной протяженности со свободной планировкой. Тем не менее, производителями систем несъёмной опалубки достаточно часто предлагаются решения, позиционируемые как ББСМП, но по сути таковыми не являющимися. В общем варианте исполнения балки в подобных перекрытиях все же имеются, хотя они и скрыты в толще сборно-монолитной плиты и представлены стальным двутавром.

Тем не менее, оригинальная технология может применяться на объектах коммерческой и жилой недвижимости, строящихся в частном порядке. Прежде всего, это перекрытия первого этажа над монолитным цоколем, а также междуэтажные перекрытия зданий из композитных бетонных панелей. Как правило в таких случаях сетка колонн включает не более 4–9 опор, то есть общая площадь перекрытия при таком способе устройства может достигать 300 м2. Из дополнительных преимуществ безбалочной системы можно отметить сниженный расход бетона и, как следствие, меньший вес каркасной конструкции.

Расчёт и проектирование

Номенклатура ЖБИ для сборно-монолитных безбалочных перекрытий и технические требования к изделиям изложены в ГОСТ 27108–86. Общее описание системы ББСМП и указания по проектированию и расчёту подробно описаны в пособии к СНиП 2.03.01–84 «Проектирование железобетонных сборно-монолитных конструкций».

На практике используются специальные програмные комплексы САПР для расчёта безбалочных сборно-монолитных конструкций

Расположение колонн для ББСМП может приниматься как равнонаправленное, так и по пересечениям прямоугольной сетки, однако в последнем случае соотношение длин пролётов не должно превышать 1,5:1. Частота установки опор должна определяться допустимой нагрузочной способностью плит в соответствии с её расчётом на прогиб под эксплуатационными нагрузками. Общая тенденция такова, что с увеличением шага установки колонн снижается толщина перекрытия и, как следствие, удельный вес конструкции становится меньше. Это обстоятельство следует учитывать при проектировании зданий на ленточных фундаментах, опирающихся на ослабленный грунт. Средний показатель толщины плит колеблется от 1/30 до 1/35 длины пролёта.

Общепринятая методология расчёта основывается на определении достаточного сечения несущих элементов в соответствии с требуемой прочностью по предельным состояниям первой группы. В ходе расчёта устанавливается достаточная толщина поперечного сечения элементов, нормального к продольной оси, в зависимости от различных условий. После этого выполняется расчёт сечений, наклонных к продольной оси, для противодействия нагрузкам смещения и косоугольных изгибающих моментов.

Пример расчёта по распределению колонн и размеру капитель

Поскольку речь идет о расчёте сборно-монолитных конструкций, отдельным разделом Приложения описывается методика расчёта прочности контактных швов омоноличивающего бетона отдельно для промежуточных и крайних опор. Целью этого расчёта является определение, как достаточной площади контактного пятна, так и применяемые методы связи сборно-монолитной конструкции: выведение арматурных элементов, устройство шпонок, обеспечение шероховатости поверхностей в зоне контакта. Эти расчёты, включая определение выносливости, также проводят по методу предельных состояний первой группы.

В завершение проектных изысканий определяется эксплуатационная устойчивость, то есть расчёт ведётся по методу предельных состояний второй группы. Сюда входит определение допустимой ширины раскрытия трещин и расчёт компенсирующих усилий сжатия и растяжения, в обоих случаях отдельно определяются показатели в плоскости, нормальной и наклонной к продольной оси железобетонного элемента. Завершается расчёт определением допустимой кривизны и деформаций в соответствии с требованиями к комплексному равновесию каркасной системы.

Используемые разновидности плит и колонн

При возведении ББСМП могут применяться как типовые изделия по ГОСТ 27108–86, так и специально запроектированные. Последнее, разумеется, в частном строительстве — большая редкость. Как правило, речь идёт о трёх типах унифицированных изделий: колоннах, навершиях к ним, а также плитах специальной конфигурации.

1 — колонна; 2 — капитель; 3 — плита перекрытия

Начать следует с того, что пригодные к использованию в безбалочных перекрытиях колонны и капители должны иметь пазо-шпунтовые соединения. Это требование диктуется упомянутым выше Пособием, где отмечается, что расчёт ведётся по состоянию сборно-монолитной конструкции до набора омоноличивающим бетоном проектной прочности. В действительности допускается временное крепление колонн и капителей стальными хомутами, которые снимают после окончательного отверждения бетонных шпонок, однако эта технология более сложная и на практике применяется редко.

Плиты для ББСМП используются двух типов. Надколонные имеют специальные углубления, препятствующие их поперечному смещению и предназначенные для технологичной стыковки с навершиями колонн. Как правило, надколонные плиты имеют оголённую арматуру как минимум по двум противолежащим краям. Реже используются плиты с отбортовкой, предназначенное для стыковки с пазами в капителях. Пролётные плиты могут изготавливаться либо с расчётом на замоноличивание только технологических швов и иметь оголенную арматуру по всем сторонам, либо омоноличиваться общим покрывающим слоем, в таком случае все их торцы будут гладкими.

Железобетонные изделия для ББСМП как правило изготавливают из тяжёлого бетона марки не ниже В25 с предварительно напряженной арматурой. В ходе реальных испытаний также была установлена возможность использования бетона на облегчённом (пористом) заполнителе при ограниченной длине пролета, а также пустотелых изделий со сферическими полостями.

Порядок монтажа безбалочных СМП

Возведение зданий с ББСМП ведётся строго поэтажно. Непосредственно устройство перекрытия выполняется по завершению установки колонн, которому предшествует монтаж закладных деталей в перекрытие нижнего этажа. Колонны также могут монтироваться по разрезному принципу, однако от такой технологии часто отказываются из-за значительной протяжённости пазо-шипового соединения.

После установки и выверки сетки опор на их уширения устанавливают оголовки. Следом проводится монтаж поясной опалубки, предназначенной для удержания бетонной массы при заливке шпонок. На капители сверху укладывают надколонные плиты и стыкуют их способом, который предусмотрен конфигурацией ЖБИ. Поверх подклонных плит укладывают межпролётные, обычно имеющие заужение в области опирания для облегчения выполнения монолитных работ.

После установки сборных элементов производится увязка дополнительных арматурных каркасов в швах омоноличивания и монтаж закладных под колонны следующего этажа при необходимости. После этого технологические пазы заливают бетоном марки В15, который усаживается вибрационным методом. На этом этапе становится очевидной вся сложность устройства перекрытий по технологии ББСМП: помимо того, что требуется тщательно подобрать изделия из номенклатуры, на строительной площадке необходимо обеспечить все условия для проведения работ по двум разным технологическим процессам с использованием широкого ряда строительной техники, зачастую тяжёлой.

виды, расчет, достоинства и недостатки

Деревянные и металлические перекрытия всегда собираются на специальных опорах. Последние при этом называются балками. Бетонные перекрытия могут укладываться в пролетах коробки здания без использования таких поддерживающих элементов. Ведь плиты этого типа сами по себе отличаются повышенной прочностью и превосходной несущей способностью.

Немного истории

Впервые безбалочные перекрытия были использованы при строительстве здания в 1902 г. в США инженером Орлано Норкорсом. В России такие конструкции также применялись еще в начале прошлого столетия. Первый такой дом у нас в стране был построен в Москве в 1908 г. Это было четырехэтажное здание склада молочных продуктов. Строилось оно под руководством инженера А. Ф. Лопейта. Особенностью зданий этого типа было то, что колонны в них имели расширенный верх. Таким образом увеличивалась площадь соприкосновения опор и плит и повышалась надежность монтажа. Поэтому в начале века перекрытия этого типа называли «грибовидными».

Где используются

Обустраиваться такие перекрытия могут в зданиях практически любого типа. Очень часто безбалочные конструкции можно видеть, к примеру, в жилых городских плитных многоэтажках. Также во многих случаях именно таким образом делают перекрытия в производственных цехах, на складах, в гаражах и пр.

В особенности часто такие конструкции обустраивают на предприятиях пищевой промышленности. Это могут быть, к примеру, молокозаводы, цеха по производству полуфабрикатов и пр. То есть чаще всего безбалочные перекрытия монтируют там, где имеются повышенные требования к гигиене.

В частном домостроении межэтажные конструкции этого типа применяются достаточно редко. Но иногда и загородные жилые здания строят именно таким образом.

Основные разновидности

В строительстве различают всего три типа подобных перекрытий:

  • сборные;
  • монолитные;
  • сборно-монолитные.

Первая разновидность конструкций состоит из двух частей: плиты, расположенной над колонной, и капители. Конфигурацию безбалочные сборные перекрытия имеют относительно несложную. Плита в данном случае опирается на специальные полки, обустроенные над колонной. Последние, в свою очередь, при этом держатся на капители и соединены между собой сваркой.

Монолитные и сборно-монолитные конструкции

Второй тип безбалочных перекрытий — монолитные. Они используются там, где необходимы гладкие потолки. К примеру, очень широко они применяются в подземных переходах и метро. Представляют собой такие перекрытия плоские неразрывные плиты, опорами которым служат колонны. Последние в данном случае также имеют капители.

Особенностью сборно-монолитных безбалочных перекрытий является то, что их проектируют с квадратной или прямоугольной сеткой колонн. Чаще всего при этом опоры устанавливают по схеме 6х6 м. Укладывают такие перекрытия по сборным, пролетным и надколонным панелям.

Безкапительные перекрытия

Такая разновидность конструкций у строителей также является достаточно популярной. В данном случае элементы перекрытия опираются непосредственно на пилоны и колонны каркаса. Плиты в таких конструкциях чаще всего имеют постоянную толщину.

Такие перекрытия при строительстве зданий начали использоваться в 1940 г. Особенностью безбалочных конструкций этого типа является уменьшенная площадь опирания плит на колонны. Для восприятия перерезывающих сил в данном случае дополнительно используется методика поперечного армирования безбалочных перекрытий. Стальные пруты значительно увеличивают прочность плит в районе примыкания их к опорам.

Также при проектировании зданий этого типа могут предусматриваться колонны большого диаметра. При использовании таких элементов увеличивается площадь соприкосновения опор и плит. А следовательно, нагрузки не могут разрушить перекрытие в районе колонн.

Виды каркасов

Строиться здания с безбалочными перекрытиями могут по разным технологиям. Каркасы таких домов бывают:

  • рамными;
  • связевыми;
  • рамно-связевыми.

В системах первой разновидности основные несущие функции по перекрытиям выполняют колонны и ригели, смонтированные в двух направлениях. Элементы каркаса в таких зданиях представляют собой жесткие рамы. Последние и воспринимают все нагрузки, действующие на постройку — как вертикальные, так и горизонтальные.

В связевых каркасах основные нагрузки приходятся на системы колонн и диафрагм, называемые также пилонами. Роль самих перекрытий в таких зданиях сильно возрастает. Помимо собственно вертикальных нагрузок, эти конструкции в данном случае воспринимают и горизонтальные, после чего передают их диафрагмам.

Комбинированные рамно-связевые каркасы используются обычно в несущих конструкциях из стали и монолитного железобетона. В данном случае системы диафрагм воспринимают 85-90% горизонтальных нагрузок. При этом при небольшом усилении они могут выдерживать их полностью, на все 100%.

Преимущества

По сравнению с обычными, безбалочные перекрытия имеют ряд безусловных плюсов. К достоинствам таких конструкций относят в первую очередь:

  • низкую трудоемкость отделочных работ;
  • уменьшение высоты и кубатуры здания;
  • улучшение санитарных условий.

Отделывать гладкие безбалочные перекрытия гораздо проще, чем обычные. В данном случае даже не нужно выполнять подшивку потолка. Все, что нужно для отделки такого перекрытия — оштукатуривание поверхности и дальнейшее окрашивание. При этом обе эти операции не займут слишком много времени.

Толщину безбалочные железобетонные перекрытия обычно имеют меньшую, чем традиционные. Соответственно, при той же кубатуре здание будет более низким.

Какие еще плюсы имеются

Ухаживать за поверхностью безбалочных перекрытий гораздо легче. Ведь в данном случае конструкция потолка или пола не имеет щелей, куда могли бы забиться мусор или пыль. Соответственно, в таких перекрытиях не заводятся разного рода болезнетворные микроорганизмы. Именно поэтому конструкции такого типа принято обустраивать в пищевых цехах или, к примеру, в больницах.

Какие имеются недостатки

Минусы у таких перекрытий, конечно же, также есть. Основным недостатком конструкций этого типа, в сравнение с балочными, является большой вес. Опоры под перекрытия этого типа приходится устанавливать максимально прочные.

Также минусом безбалочных конструкций считается ограниченная ширина пролетов. Слишком большим расстояние между опорами под плиты таких перекрытий быть не должно. Железобетон — материал очень прочный. Но при значительной площади и серьезной нагрузке такая плита начнет все же прогибаться и может даже разрушиться.

Экономически целесообразным считается лишь обустройство безбалочных перекрытий в пролетах шириной не более 5х6 метров при нагрузке 5 кН/м2. В этом случае конструкции обычно получаются достаточно надежными.

Проектирование безбалочных перекрытий — процедура достаточно сложная и очень ответственная. Выполнить такую работу может только опытный высококвалифицированный инженер. Сложности в составлении чертежей, конечно же, также можно отнести к минусам подобных конструкций.

Особенности расчета безбалочного перекрытия

Проектировать перекрытия этого типа, таким образом, следует максимально тщательно. В обычных конструкциях этого типа нагрузку принимают множество достаточно коротких лаг. Плиты же имеют большую площадь, а поэтому могут прогибаться сильнее.

Как же делают расчет безбалочных перекрытий? Как уже упоминалось, наиболее широко в строительстве распространены подобные конструкции, монтируемые над пролетами до 5-6 м. Если расстоянии между опорами больше, у проектировщиков обычно возникают сложности с обеспечением прочности плит на продавливание.

Разрушаться подобным образом перекрытие начинает вокруг колонны. Бетон в этом месте теряет целостность, что может привести к мгновенному обрушению плиты. Повысить прочность конструкции на продавливание можно несколькими способами:

  • путем увеличения рабочей толщины плиты;
  • посредством увеличения площади опирания;
  • путем установки поперечной арматуры.

Самих методов расчета безбалочных перекрытий монолитных, сборных или сборно-монолитных существует несколько. К примеру, в строительстве часто используется технология вычисления суммарного изгибающего момента.

Также проектирование безбалочных монолитных перекрытий может производиться с применением и более точных и современных технологий. К примеру, одна из таких методик называется оценкой моментов.

Старая технология

Эта методика для выполнения расчета при устройстве безбалочных перекрытий в наше время используется достаточно часто. В данном случае первым делом инженеры берут за основу то, что силы на капителях распределены по треугольнику. За расчетный пролет панели при этом принимают расстояние между центрами тяжести последних. Общий суммарный изгибающий момент в этом случае может быть рассчитан по следующей формуле:

  • M = 1/8 WL(1-2c/3L)(1-2c/3L).

Здесь W – полная нагрузка на ячейку безбалочной плиты перекрытия, L – расстояние между колоннами, c – размеры капителей.

Выведена эта формула была Дж. Никольсом в 1914 г. Уже в 1917 она была принята как одна из строительных норм ACI. Используется эта формула для расчета перекрытий с капитальными колоннами.

Оценка моментов

Эта несколько более современная методика была разработана на основе как экспериментов, так и теоретических данных. У нас в стране ее совершенствованием в 30-е годы прошлого века занимались В. И. Мурашов и А. А. Гвоздев.

Для квадратной панели формула в данном случае используется такая:

  • M0=1/8 WL(1-2c/3L)(1-2c/3L).

Чтобы определить моменты в расчетных сечениях и при конструировании арматуры, перекрытия при использовании такой методики делят на пролетные и надколонные полосы в плане. Причем делают это таким образом, чтобы ширина каждой такой части была равна половине расстояния между осями колонн во всех направлениях.

В каждой такой полосе в процессе эксплуатации здания возникают отрицательные и положительные моменты. При этом в надколонных элементах они обычно больше, чем в пролетных. По ширине полос моменты определяются по кривым. Однако на практике используются ступенчатое их измерение. При этом по ширине полос моменты принимают постоянными.

При разного рода пластических деформациях может происходить в том числе и перераспределение M. Поэтому величины моментов в четырех расчетных сечениях плит определяют так, чтобы их сумма в конечном счете была равна балочному M0.

Особенности монтажа плит

Технология сборки безбалочных перекрытий зависит в первую очередь от их разновидности. При использовании железобетонных плит методика строительства выглядит следующим образом:

  • изготовление плит на предприятии;
  • погрузка их на автотранспорт и доставка к месту строительства объекта;
  • выгрузка плит автокраном на месте строительства;
  • монтаж плит на колонны и стены здания автокраном.

Считается, что длина железобетонных плит не может превышать 9 м.

Монтаж монолитного перекрытия

Такие конструкции заливают в предварительно собранной деревянной опалубке. Дно такой формы также делают дощатым. Снизу его подпирают специальными телескопическими опорами. После этого производят заливку следующим образом:

  • устанавливают арматуру на специальные грибки-подставки;
  • заливают в опалубку бетонную смесь.

Строительный раствор готовят на предприятиях с точным соблюдением всех положенных технологий в плане пропорций и однородности. Подают его в опалубки посредством шланга из автоцистерны.

Форму с залитого таким образом перекрытия снимают примерно через 2 недели. Все это время плиту ежедневно поливают водой из шланга для того, чтобы предотвратить появление поверхностных трещин. К дальнейшему строительству здания приступают не ранее, чем еще через две недели. Для того чтобы бетон набрал достаточную прочность, требуется не менее месяца.

Источник: fb.ru

Монолитные безбалочные железобетонные перекрытия

Перекрытие из монолитного железобетона

Перекрытие из монолитного железобетона выполняется там, где проектируются здания с нетрадиционной по геометрии планировкой. Это позволяет не «подстраивать» стены дома и его внутреннюю планировку под размеры сборных плит перекрытия.

Если строительство предусмотрено в городской черте со стесненными условиями, где нельзя использовать крупногабаритную строительную технику, то это диктует выполнение монолитного перекрытия из железобетона.

По прочностным характеристикам, несущей способности перекрытие из монолитного железобетона превосходит сборный вариант, так как представляет собой литую конструкцию, работающую едино.

Кроме того, поверхность низа перекрытия не нуждается в такой тщательной отделке, как сборный вариант, где требуется заделывание стыков между панелями и дальнейшая их отделка.

Рассмотрим и минусы монолитного перекрытия:

  • Большая трудоемкость работ по сравнению со сборным вариантом, так как все работы выполняются на строительной площадке. Тогда как сборное перекрытие – привез, выгрузил, смонтировал или смонтировал прямо с «колес».
  • Значительные расходы на опалубку – пиломатериалы, финскую фанеру, металлическую опалубку и прочие виды.
  • Длительный срок твердения бетона, что приводит к задержке выполнения следующих по технологии работ. Этот фактор увеличивает продолжительность строительства.

Виды монолитного перекрытия из железобетона

Балочное перекрытие представляет собой плиту и балки (ребра). При больших пролетах (более 6 м) необходимы промежуточные опоры, которые выполняют в виде прогонов или колонн, выполненных из монолитного железобетона.

Кессонные перекрытия – одна из разновидностей балочного перекрытия. Оно представляет собой плиту и две взаимно перпендикулярных по направленности балки, находящиеся в нижней зоне. Такая конструкция создает снизу прямоугольные углубления, именуемые кессонами.

Если коротко сказать, то при расчете этого вида перекрытия производится перераспределение арматуры и бетона в конструкции (плита – ребра). Это позволяет получить экономию материала, осуществлять перекрытие больших пролетов. Но это тема уже другой статьи.

Кессонные перекрытия распространены в основном за рубежом при возведении зданий общественного назначения с подвесными потолками.

Монолитные безбалочные перекрытия из железобетона – это сплошная плита, опирающаяся на стены или колонны, которые находятся друг от друга на расстоянии 5 – 6 метров.

Толщина плиты принимается по расчету и варьирует в пределах 120 – 250 мм. Применение этих железобетонных перекрытий, опирающихся на колонны, позволяет добиться гораздо большего разнообразия объемно – планировочных решений.

Балконные плиты, выполненные совместно с монолитным перекрытием и являющиеся его частью, обладают большей прочностью и долговечностью по сравнению с их сборными аналогами.

Все элементы обоих видов перекрытий связаны едино между собой. Размеры сечения каждого элемента, потребное количество арматуры определяется расчетным путем в каждом отдельном случае.

Технология устройства перекрытия из монолитного железобетона

Рассмотрим более подробно наиболее распространенные сегодня безбалочные монолитные железобетонные перекрытия. Этот вид перекрытия нашел широкое применение в многоэтажном домостроении, при возведении зданий и сооружений в местностях с повышенной сейсмичностью.

Каркасы таких зданий, состоящие из колонн и железобетонной плиты, обладают повышенной прочностью, долговечностью. В последнее время этот вид перекрытия стал все чаще применяться при строительстве коттеджей и частных домов.

Установка опалубки

Система опалубки должна обеспечивать ее жесткость и геометрическую неизменяемость в течение всего процесса возведения здания. Установка ее производится в соответствии с проектом производства работ. Перед началом работ выполняется геодезия по разбивке осей, мест монтажа.

Ее можно выполнить из обрезной доски, водостойкой фанеры толщиной от 18мм и более, из металлических инвентарных щитов.Наиболее удобна для устройства палубы (настила) водостойкая фанера из-за своего относительно небольшого веса, наличия защитного покрытия и многократной оборачиваемости.

Для опирания опалубки используют специальные поддерживающие стойки, которые раскрепляют между собой.

Она устанавливается строго горизонтально, поверхность ее смазывается (эмульсолом, отработкой моторного масла и прочим). Щели в ней до бетонирования должны быть обязательно заделаны во избежание вытекания через них цементного молочка, так как это снижает качество бетона и повреждает опалубку.

При строительстве многоэтажных домов целесообразно применение инвентарной формы многократного использования, которая переставляется с этажа на этаж. Стоимость ее окупается благодаря большой оборачиваемости.

Именно она сегодня получила наибольшее распространение. При правильном обращении с ней и должном уходе ( очистка, смазка поверхности, контактирующей с бетоном) количество оборотов такой опалубки может достичь нескольких десятков.

Армирование монолитного перекрытия

Армирование конструкции выполняется согласно проекту, где указывается диаметр арматуры, размер ячеек, величина нахлеста между арматурными прутьями при стыковке их по длине.

Армировать перекрытие из монолитного железобетона следует каркасами или сетками, изготовленными на заводе. На строительной площадке допускается изготавливать только доборы арматуры или связи каркасов между собой.

Замена арматуры по классу, марке, сортаменту производится только с согласования проектной фирмы. Смещение арматурных изделий при монтаже их в опалубку не допускается более чем 1/5наибольшего диаметра стержней и 1/4 устанавливаемого стержня.

Допустимые отклонения от проекта толщины защитного слоя из бетонной смеси не должны быть более:
— При толщине слоя 15мм и меньше 3мм;
— При толщине слоя больше 15мм 5мм.

После установки арматуры следует оформить акт на скрытые работы, который должен подписать представитель технического надзора. К акту прилагаются сертификат на арматурные изделия, электроды, копия удостоверения сварщиков, прочие документы по замене, согласованные с проектным институтом ( если таковые имели место).

Укладка бетона

После подписания акта на скрытые работы по установке арматуры, разрешается переходить к бетонированию. Чтобы перекрытие из монолитного железобетона получилось высокого качества важно процесс бетонирования произвести непрерывно и весь объем

Особенности монолитных безбалочных перекрытий | Статья в журнале «Молодой ученый»

Библиографическое описание:

Зацепилова, А. В. Особенности монолитных безбалочных перекрытий / А. В. Зацепилова. — Текст : непосредственный // Молодой ученый. — 2019. — № 50 (288). — С. 108-111. — URL: https://moluch.ru/archive/288/65276/ (дата обращения: 15.12.2020).



Ключевые слова: железобетонное перекрытие, колонна, капитель, узел опирания.

В настоящее время активно развивается строительство жилых и общественных зданий из монолитного железобетона. Рациональным является использование каркасно-стеновой конструктивной системы, позволяющей обеспечить свободные планировки помещений при соблюдении требования по необходимой жесткости и устойчивости здания. Конструкция представляет собой систему из вертикальных несущих элементов — колонн, стен и горизонтальных несущих элементов — перекрытий.

Железобетонные плоские перекрытий являются одним из самых распространенных видов конструкций, которое применяются в строительстве зданий и сооружений. Выделяют две основные группы перекрытий в соответствии с их конструктивными схемами. Первая группа — балочные перекрытия, вторая группа — безбалочные перекрытия.

В балочных перекрытиях расположение балок возможно в одном или в двух направлениях. Обеспечивается совместная работа балок и опирающихся на них плит. Иная ситуация в безбалочных перекрытиях, где опирание плиты происходит непосредственно на колонну.

Безбалочные превосходят балочные перекрытия по следующим пунктам:

− возможность возведения зданий любой конфигурации в плане, с различными объемно-планировочными решениями;

− улучшение освещенности помещения;

− упрощение устройства инженерных коммуникаций;

− уменьшение в целом высоты постройки;

− уменьшение расхода материала для стен.

Существенным недостатком является большой собственный вес безбалочных перекрытий по сравнению с балочными. Несмотря на утяжеление конструкций строительство зданий со сплошными перекрытиями получило широкое распространение в нашей стране и в мире в связи с технологической простотой возведения таких перекрытий.

Существуют следующие разновидности безбалочных перекрытий:

− сборные;

− монолитные;

− сборно-монолитные.

Безбалочные перекрытия с капителями появились более 100 лет назад. Впервые такие перекрытия были выполнены Рунером и Торнером в 1906 г. в США. В Европе первое безбалочное перекрытие было использовано в 1908 г. в России А. Ф. Лoлейтом при строительстве четырехэтажных молочных складов в Москве. В СССР они применялись в основном в промышленных зданиях, московских станциях метро, подземных резервуарах. В общественных и жилых зданиях безбалочные перекрытия не использовались, так как капитель, необходимая для устройства перекрытия, уменьшала высоту и полезный объем помещений. [1].

С развитием в строительстве технологических приемов и механизмов, стремление к увеличению строительного объема зданий и уменьшению экономических затрат возросла роль монолитного строительства.

Для расчета безбалочных плит Маркусом и Штаерманом М. Я. был разработан метод заменяющих рам (рис.1). По методу заменяющих рам, который вошёл в учебники по железобетонным конструкциям, выполняется расчет двух накрест расположенных рам, причем расчетная ширина ригеля рамы принимается равной полусумме прилегающих пролетов, перпендикулярной к плоскости данной рамы. После их статического расчёта проводится конструирование плиты исходя из балочной схемы работы перекрытия. Приопорные участки конструируются по значениям поперечных сил, полученными также при расчёте рам. Существенным недостатком данного метода является большая погрешность в случае неравных пролетов. [1].

Рис. 1. Расчетная схема плиты для расчета методом заменяющих рам [1]

Конструктивно безбалочные плиты могут быть с капителями и без них (рис. 2).

Назначение капителей:

− обеспечение жесткого сопряжения перекрытий с колоннами в системе каркаса здания;

− увеличение прочности плиты перекрытия на излом;

− обеспечение прочности плиту от продавливания в месте ее опирания на колонны;

− увеличение общей жесткость перекрытия;

− уменьшение расчетного пролета плиты и более равномерное распределение усилий по ее ширине.

Рис. 2. Монолитное безбалочное перекрытие а) без капители; б) с капителью [1]

Монолитные безбалочные бескапительные перекрытия увеличивают полезный объем помещений, позволяют наиболее выгодно проложит инженерные сети, уменьшают расход материалов.

Зона опирания плиты на колонну является наиболее ответственным местом конструкции безбалочного монолитного перекрытия и требует проверки прочности этой зоны на продавливание.

Современные исследователи не пришли к общему мнению о механизме продавливании плиты. Экспериментальные исследования показали, что характер разрушения изменяется от хрупкого (мгновенно) до пластического. На данный момент существуют два основных представления о механизме продавливания.

Одни исследователи считают, что плиты сопротивляются продавливанию за счет прочности бетона на растяжение. Продавливание — пространственная форма скалывания, во время которого из тела плиты происходит выкалывание бетонной усеченной пирамиды, боковые стороны которой наклонены по углом 45 к горизонтали, а высота равна рабочей высоте плиты (h0).Этот механизм продавливания принят в СП 63.13330.2018, где рассматривают расчетное поперечное сечение, расположенное вокруг зоны передачи усилий на элемент на расстоянии нормально к его продольной оси (рис.3). [2]

Рис. 3. Условная модель для расчета на продавливание [2]

Иной подход базируется на предположении, что плита сопротивляется продавливанию за счет работы сжатой зоны вблизи колонны, которая находится в условиях сложного напряженного состояния сжатия. Профессор В. А. Клевцов и А. Н. Болгов (НИИЖБ) считают, что несущая способность может определяться работой бетона как на растяжение, так и на сжатие. В лаборатории НИИЖБ ими был проведен ряд экспериментов, направленных на изучение влияния сжимающего усилия со стороны верхней колонны на несущую способность плиты при продавливании. По результатам испытаний В. А. Клевцов и А. Н. Болгов пришли к выводу, что разрушение плиты при продавливании имеет несколько механизмов, при которых роль прочности бетона на растяжение и сжатой зоны плиты изменяется в зависимости от физических и геометрических параметров конструкций. [3]

Таким образом, механизм продавливания плит перекрытия неоднозначен и требует дальнейших подробных исследований экспериментальных и аналитических, а также усовершенствования нормативной базы.

Литература:

  1. Дорфман А. Э., ЛевонтинЛ.Н.. Проектирование безбалочных бескапительных переркрытий. — М.:Стройиздат, 1975. — 124 с.
  2. СП 63.13330.2018 «СНиП 52–01–2003. Бетонные и железобетонные конструкции. Основные положения». — М., 2018. — 168 с.
  3. Клевцов В. А., Болгов А. Н. Действительная работа узлов плоской безбалочной бескапительной плиты перекрытия с колоннами при продавливании // Бетон и железобетон. — 2005. — № 32. — С. 17–19.

Основные термины (генерируются автоматически): перекрытие, колонна, продавливание, капитель, механизм продавливания, плита, рама, строительство зданий, существенный недостаток.

Безбалочные перекрытия из монолитного железобетона – виды и особенности

Традиционные системы монтажа перекрытий при строительстве зданий – это железобетонные плиты. Такая система активно использовалась в возведении любых сооружений в советские времена. Эта же система долго применялась при строительстве в постсоветский период. В настоящий момент эта традиция постепенно упраздняется. Её заменяет система безбалочных перекрытий – железобетонные перекрытия, опорой которым служат стены или колонны, или и то и другое. Что это за система? Каковы её виды? Каковы их особенности с точки зрения конструкции? Возможны ли изломы из-за нагрузок на вертикальные опоры? Все эти и другие вопросы рассмотрим далее в статье.

 

Виды и особенности железобетонных перекрытий

С учётом того, на что опираются перекрытия, их можно разделить на те, что опираются на колонны и те, что опираются на стены. Перекрытия с опорой на колонны – это кессонные. О них речь будет дальше. Их часто применяют в Европе. Теперь и в Российской Федерации нередко применяют такое технологическое решение. Их в основном применяют, когда возводят общественные, административные или коммерческие здания. В частном строительстве не применяют.

Перекрытия с опорой на стены бывают:

  • Монолитные.
    Монолитные – железобетонные конструкции, ориентированные на весь периметр здания. Монтируется опалубка, устанавливается и связывается арматурный каркас. Затем заливается бетон. Это – монолитное перекрытие.
  • Сборно-монолитные.
    Сборно-монолитные перекрытия – это перекрытия, монтаж которых связан с установкой балок. Между заводскими балками устанавливаются блоки. Они представляют собой что-то вроде опалубки. Сверху блоков-вкладышей укладывается армокаркас из арматуры сечением 10 на 10 мм или 15 на 15 мм. Снизу блоки подпираются стойками или балками.

Теперь по порядку.

 

Сборно-монолитные перекрытия

Сборно-монолитные перекрытия конструктивно состоят из:

  • Балок, которые устанавливают между стенами с определённым шагом (зависит от газобетонных блоков-вкладышей).
  • Блоков-вкладышей – их вкладывают (потому они вкладыши) между балок, что и определяет шаг между ними.

Системой опалубки в сборно-монолитных перекрытиях служит тандем балок и блоков-вкладышей. Вкладыши опираются на балки. Снизу балок установлены стойки. Сверху балок вяжется арматура, потом заливается бетон толщиной не менее 50 мм. В итоге получаем монолитное перекрытие, но с применением блоков из газобетона, своего рода, прокладок. На выходе – прочное и жесткое перекрытие.

 

Виды, состав и функции блоков-вкладышей

В настоящий момент производятся следующие блоки-вкладыши:

  • Керамзитобетонные – достаточно прочны и недороги по деньгам.
  • Газосиликатные – идеальны в своих физических параметрах (иногда это очень важно) и хороши своими теплоизоляционными свойствами.
  • Полистиролбетонные – у этих блоков хорошая теплопроводность, но, к сожалению, низкая пожаростойкость.

Поскольку блоки-вкладыши – это что-то вроде несъёмной опалубки, их задача – вместе с армокаркасом и залитым бетонным слоем сформировать перекрытие, которое будет высокого качества, с точки зрения процесса строительства и финансово выгодным. Плюс это перекрытие не будет таким тяжёлым, как сплошной железобетон, толщиной несколько десятков сантиметров.

 

Кессонное перекрытие

Кессонное – тоже монолитное перекрытие, но в виде ребристых плит. Ребра плит перпендикулярны и находятся снизу. Конструкция хороша тем, что бетон сосредоточен не в зоне растяжения, а в участках сжатия. Это позволяет удешевить стоимость перекрытия, не жертвуя качеством и технологическими требованиями к безопасности.

Колонны для этого безбалочного перекрытия возводятся прямоугольной или квадратной сеткой. Дополнительно перекрытие имеет опору на весь контур несущих стен.

 

Конструкция и формы кессонов

Кессонное перекрытие выполняется с применением специальных пластмассовых форм, называемых кессонообразователями. Их размеры 740х800 мм, высота 200-400 мм и имеют наклон боковых граней до 18°.

Раскладываются на малом расстояние друг от друга (по осям 800х800 мм), т.к. необходимо образование специальной полости для бетонирования монолитных ребёр. Конечная работа выйдет 200-400 мм по толщине, а сплошная часть конструкции не должна превышать 50-60 мм.

Поверх опалубки конструкции из кессонов накладывается армирующая сетка.

Основной момент, на который стоит обратить внимание - армирование утолщенных участков монолитного перекрытия. Необходимо будет использовать напряженную арматуру большего сечения, нежели для стандартной горизонтальной сетки. Для качественной работы необходимо использовать специальную опалубку, которая состоит из металлических обрешеток и вертикальных строек, в этом случае кессонная конструкция будет полностью готова к монтированию.

При монтаже стоит учесть размеры кессонообразователей, ведь они укладываются всегда поверх обрешетке. Выполнить монтаж довольно легко, ведь бетон к пластику не прилипает и проблем с застыванием конструкции из бетона обычного не вызывает. Легко можно удалить ненужные застывания с помощью подручных средств.

 

Допустимый уровень нагрузки

При расчете допустимой нагрузки для безбалочного монолитного перекрытия кессоного типа используют метод предельного равновесия.

Опытным путем были выявлены самые опасные виды нагрузок для данных конструкций:

  • Полосовая нагрузка - результатом будут трещины в нижней части перекрытия. Такие проблемы возникают всегда при воздействии 3 линейных пластических шарнира задача которого соединять звенья на участках излома. Рядом с опорой шарнир происходит на заданном расстояние от оси колонн, данные характеристики имеют прямую связь с размером и конфигурацией капителей и трещины могут появится сверху. Если присутствует опирание на стену, то тогда трещины могут быть по наружному краю.
  • Сплошное загружение - линейные пластические шарниры установлены перпендикулярны и параллельны рядам колонн и образуются в центральных панелях с трещинами снизу. При такой нагрузке шарниры делят панель на 4 звена, выполняя крутящийся движения вокруг опорных пластических шарниров с осями в зоне капителей, расположенными под строгим углом в 45° относительно рядов колонн. Трещины раскрываются как правило всегда в средних панелях прямо над шарнирами сверху, а вдоль параллели линий колонн, трещины образуются по всей толщине перекрытия. При использовании полукапителей с окаймляющими балками трещинообразование может иметь прямую связь, как и при опирание конструкции на стену и т.д.

 

Как провести расчёт затрат и производительность?

С помощью рамной конструкции и применения кессонных перекрытий происходит общее уменьшение конечного масштаба здания, что существенно снижает конечную стоимость. Лучше всего использовать подобные конструкции из кессонных перекрытий на промышленных, административных или гражданских объектах. С минимальным бюджетом вы сможете перекрывать пролёты длиной до 6 метров. Техническая характеристика по несущей способности внутри рамной системы будет выдерживать до полутоны кг на м2.

При грамотном расходе бетона легко уменьшается значимая часть финансовых затрат. С учётом того, что при использовании бетона задействуется низкая трудоёмкость и присутствует возможность быстрого выполнения сооружения, то можно дополнительно сэкономить на растратах.

Важно: при проектировании кессонообразователей обязательно учтите, что в местах расположения колонн и капителей перекрытие должно быть сплошным, иначе установка будет невозможной.

Основные затраты на необходимые материалы и приспособления для возведения монолитного перекрытия:

  • Опалубка из металлических обрешёток и опорных стоек. Как правило берётся в аренду, а не покупается.
  • Бетон - в большинстве случаев необходим «миксер» с бетононасосом, с помощью которого в автоматическом режиме осуществляется подача смеси на перекрытие.
  • Арматура для армирования.

В процессе обязательно всплывают непредвиденные расходы, которые тяжело предусмотреть. Закладывайте заранее подушку безопасности в 10-15% от предстоящих основных расходов на случай дополнительных трат.

 

Если вам необходимо заказать плиты перекрытия, то следует обратиться в IS GROUP. Мы готовы предоставить различные конструкции, в любой регион страны. У нас вы сможете найти различные дорожные плиты, аэродромные плиты блоки ФБС, СВАИ, плиты перекрытия и многие другие плиты ЖБИ. Доставка осуществляется железнодорожным транспортом. Если в вашем городе нет компании, которая может обеспечить вас строительными материалами, то обязательно обратитесь к нам.

Beam: завершение монолитных приложений для подключенных устройств

USENIX ATC 2016 |

Распространение подключенных сенсорных устройств (или Интернета вещей) теоретически может позволить использовать ряд приложений, которые делают обширные выводы о пользователях и их среде. Но на практике разработка таких приложений сегодня является сложной задачей, поскольку они должны реализовывать всю логику считывания данных и логического вывода, даже когда устройства перемещаются или временно отключаются.Мы разрабатываем Beam, фреймворк, который упрощает приложения Интернета вещей, позволяя им указывать, «что следует ощущать или делать выводы», не беспокоясь о том, «как это воспринимается или предполагается». Beam представляет ключевую абстракцию графа вывода, чтобы отделить приложения от механики восприятия и рисования выводов. Граф вывода позволяет Beam решать три важные задачи: (1) выбор устройства в гетерогенных средах, (2) эффективное использование ресурсов и (3) обработка отключений устройств.Используя Beam, мы разрабатываем два разных приложения, использующих несколько разных типов устройств, и показываем, что их реализации требовали до 12 раз меньше строк кода, в результате чего точность вывода была в 3 раза выше

.

Prokon Home - Prokon

PROKON - это глобальный бизнес с присутствием в более чем 150 странах с поддержкой нескольких языков. Каждый день инженеры-строители, инженеры-строители и инженеры полагаются на наше программное обеспечение, которое помогает оптимизировать моделирование, проектирование и детализацию рабочих нагрузок. Успех PROKON в основном объясняется интеграцией не только между нашими модулями, но и со сторонним программным обеспечением. На протяжении десятилетий мы поддерживали новое поколение инженеров, стремящихся перейти от теории к практике.Именно по этой причине PROKON предлагает учебным заведениям и их студентам во всем мире то же программное обеспечение для анализа и проектирования, которое используется в промышленности.

Программное обеспечение

PROKON разработано «Инженерам инженерами». Вот почему имя PROKON пользуется доверием с 1989 года. Впоследствии решения мигрировали через различные программные платформы, тенденции дизайна и изменения в технологиях. Теперь мы поддерживаем широкий спектр рабочих процессов, развертываний, методов лицензирования, программных услуг и различных интеграций.

Удовлетворяя меняющиеся потребности клиентов, мы поддерживаем инженеров в их путешествии по технологиям.

.

Монолитный компрессор двумерного пучка для жестких рентгеновских пучков

Описание Используя асимметричную дифракцию при скользящем падении или при скользящем выходе, можно расширить или сжать рентгеновский луч в одном измерении. Комбинируя две асимметричные дифракции с некопланарными плоскостями дифракции, можно получить двумерное расширение или сжатие пучка. В этой статье описывается монолитный двухмерный компрессор рентгеновского пучка, состоящий из двух некопланарных асимметрично наклоненных дифракторов {311}, изготовленных в одном блоке кремниевого кристалла и испытанных на оптической линии BM05 в ESRF, Гренобль.Представлены конструкция компрессора рентгеновского луча, результаты моделирования изображения трассировки луча, экспериментальная установка, использованная для тестирования, и свойства сформированных рентгеновских микропучков. Для энергии пучка 9,5 кэВ наблюдалось 10- и 13-кратное сжатие пучка в двух направлениях. Используя металлическую сетку в падающем луче, в выходящем луче было получено более 400 микропучков размером менее 10 мкм, разделенных расстоянием менее 5 мкм. Было получено до 100-кратное увеличение интенсивности на единицу площади по сравнению с геометрией лупы для рентгеновского луча, что демонстрирует реальное двумерное сжатие луча.
.

Монолитный компрессор двумерного пучка для жестких рентгеновских лучей

Název česky Monolitický dvoudimenzionální zmenšovák pro tvrdé rtg svazky
Autoři

КОРИТАР Д. БАУМБАХ Т.ФЕРРАРИ К. ХЕЛЬФЕН Л. ВЕРДИ Н. МИКУЛЁК Петр KUBĚNA Алан ВАГОВИЧ П.

Rok publikování 2005
Друх Чланек в одном периоде
Časopis / Zdroj Дж.Phys. D: Прил. Phys.
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www http: // www.sci.muni.cz/~mikulik/Publications.html#KorytarBaumbachFerrari-JPD-2005
Обор Fyzika pevných látek a magnetismus
Klíčová slova рентгеновская оптика; лупа; размагничиватель; синхротронное излучение
Popis Použitím asymetrické difrakce v tečném dopadu či odrazu je možné rozšířit nebo zmenšit průřez svazku v jedné dimenzi.Složením dvou asymetrických difrakcí s nekoplanárními rovinami difrakce je možné získat dvoudimenzionální zvětšení či zmenšení svazku. V tomto článku referujeme o monolitickém dvoudimenzionálním rtg zmenšováku využívajícím dvě nekoplanární asymetrické nakloněné diffraktory {311} připravené v jedíkém bloom. Prezentujeme jeho návrh, цифровое моделирование и расстояние на оптическом канале BM05 v ESRF, Гренобль. Про энергию от 9,5 кэВ от 10 до 13 особой компресии в ноу смереч. Užitím kovové mřížky v dopadajícím svazku jsme vyrobili 400 mikrosvazk, které ve výstupním svazku byly menší než 10 um s rozestupem 5 um, se 100násobným ziskem vyrobili.
Související projekty:
.

MOST - Технология монолитных оптических структур

Будь то военное, космическое / аэрокосмическое или коммерческое применение, включение (M.O.S.T. ™) в вашу конструкцию дает множество преимуществ.

Инженеры

экономят значительное количество начального времени при интеграции M.O.S.T. ™ в систему, поскольку это предварительно настроенный блок. Кроме того, огромная экономия на долгосрочном обслуживании. Поскольку мы постоянно выравниваем узел, он демонстрирует исключительную термическую и механическую стабильность, и не требует регулировки.

Ваш браузер не поддерживает теги видео.

Используйте M.O.S.T. ™ в конфигурациях интерферометров, лазерных резонаторах, делителях луча, системах доставки луча, визировании и многом другом.

Некоторые примеры приложений:

Разделитель пучка

Разделяет один входной луч с несколькими длинами волн на 3 разных выхода для метрологических приложений.

Монолитное сканирующее устройство

Разработанная для колебаний с частотой выше 1 кГц, при сохранении стабильности и точности эта легкая конструкция сбалансирована для уменьшения момента инерции относительно осей штифтов.

Интерферометр PLX

Основанный на нашей запатентованной технологии M.O.S.T. ™, он особенно полезен, когда система должна работать в широкополосных световых приложениях, таких как FTIR. Эта многослойная конструкция в сборе демонстрирует исключительную термическую и механическую стабильность и служит неограниченно долго.

PLX использовала M.O.S.T. ™ для производства оптических структур, включающих от 2 до 5 оптических элементов с типичной прозрачной апертурой 0.Диаметр от 5 до 5 дюймов. Также возможны прозрачные отверстия большего или меньшего размера. PLX производит большинство своих устройств M.O.S.T. ™ с использованием плоских элементов, но может также включать и неплоские поверхности, если выходные результаты четко определены. Фактически, PLX может настраивать структуру M.O.S.T. ™ для включения практически любой специальной функции или конфигурации, которые вам требуются, и может улучшить практически любую лабораторную установку, которую вам нужно преобразовать в прибор.

Все изделия можно модифицировать для работы в уникальных и суровых условиях окружающей среды.

Для получения дополнительной информации, пожалуйста, посетите нашу страницу контактов

.

Монолитный купольный дом Ананура | Монолитно-купольный институт

Это сфера размером 35 × 15 футов. Снаружи - эластомерная штукатурка Elray. Брови вручную вылеплены из расширенного стального станка, наполненного соломой.

В этом куполе есть лазейка. TJI (Trus Joist I) вставляется в рейки кольцевой балки. Пол - натуральная дугласская ель, а также балки и потолок в спальне.

Основная хребтовая стена изогнута для того, чтобы дом сохранял плавность.

Передний и боковой входы представляют собой вставные проемы, к проемам прикрепленные куски пенопласта In-Sul и покрытые штукатуркой.

Дом отапливается пропановым камином мощностью 30 000 БТЕ. Этот дом расположен на высоте примерно 8500 футов над уровнем моря в горах Сангре-де-Кристо в южной части центрального штата Колорадо. Она любит это!

Между прочим, он был создан в декабре прошлого года однозначными числами и завершен к апрелю. Какая поездка!

Примечание. Эта статья перепечатана из нашего обзора за осень 1998 года. Он был написан Хартли Спенсером после того, как он завершил монолитную мастерскую в апреле 1996 года и с помощью друзей построил дом с монолитным куполом для Ананура, своей жены.

.

Смотрите также