Из чего делают солнечные панели


Из чего сделаны солнечные батареи: их разновидности, принцип работы

С того момента, когда в далеком 1839 году французский ученый Александр Беккерель случайно наткнулся на непонятное явление, связанное с воздействием света на некоторые материалы, произошло много событий. И наткнувшись на старую публикацию в физическом журнале, немецкий физик Генрих Герц уже не случайно проводит опыты, облучая ультрафиолетовым светом цинковые разрядники резонатора.

Его исследования привели к открытию того, что сейчас называется «внешний фотоэффект». Далее эстафету принял русский ученый Александр Столетов, который, исследуя это явление, сделал несколько важнейших открытий и вывел первый закон фотоэффекта. В начале ХХ века Альберт Эйнштейн, взяв за основу гипотезу Макса Планка, дал принципиальное объяснение фотоэффекта.

С тех пор многие выдающиеся ученые занимались изучением фотоэффекта, надеясь найти этому явлению практическое применение. И решение было найдено. Вначале итальянец Джакомо Луджи Чамичан создает прототип, а уже в 1954 году американская компания Bell Laboratories объявила о том, что ее специалистами создана первая в мире солнечная батарея, вырабатывающая электрический ток под воздействием солнечного света. Это и был фотоэффект в действии.

Так что же это такое, из чего сделаны солнечные батареи, как они работают.

Как правило, когда говорят «солнечная батарея», подразумевают, что это один или несколько фотопреобразователей, которые, будучи облучены солнечным светом, преобразовывают его в электричество. Главный элемент преобразования солнечного излучения в электричество – это, конечно же, материал, который, будучи освещенным, преобразовывает поток света в электроэнергию. Материал этот – полупроводник.

В электротехнике, электронике используются, как правило, два полупроводника – германий (Ge) и кремний (Si). В фотовольтаике в большинстве своем используется кремний как наиболее распространенный и дешевый. Германий – редкий элемент, дорогой, поэтому он используется в исключительных случаях.


Структура солнечной батареи

Для изготовления солнечных фотопреобразователей используются два вида кремния – монокристаллический и поликристаллический. Как уже явствует из характеристик, монокристаллические фотопреобразователи изготавливаются из кристаллов кремния, выращенных искусственно.

Эти кристаллы затем по специальной технологии нарезаются на тонкие пластины, из которых изготавливаются сами фотопреобразователи. Нарезанные пластины тщательнейшим образом проверяются на точность нарезки, толщину самой пластины, отсутствие физических дефектов.

Этот контроль необходим для последующей сборки самого солнечного модуля, так как малейшее отклонение параметров хотя бы одного элемента влечет за собой значительные потери мощности всего солнечного модуля. Пластины монокристаллического кремния окрашены в равномерный темно-серый цвет – это естественный цвет кристаллов кремния.


Кремниевые фотоэлементы
Поликристаллический (слева), монокристаллический (справа)

В отличие от монокристаллов, поликристаллические фотопреобразователи изготавливаются методом литья. Такие фотопреобразователи более просты и доступны. Если солнечные элементы из монокристаллического кремния представляют собой восьмиугольники строго выдержанного размера (допуск ± несколько микрометров), то поликристаллические элементы – как правило, прямоугольной формы с голубовато-синим отливом. К кремнию для получения особых свойств добавляют определенное количество мышьяка (As) и бора (B).

Преобразование света в электричество

Это и есть практическое применение фотоэффекта – прямое преобразование энергии света в энергию электрическую. Собственно, реакция материала на облучение светом зависит от кристаллической структуры полупроводника. Структурно каждый фотоэлемент состоит из двух слоев. Один слой в кристаллической решетке имеет переизбыток электронов и называется областью электронов.

Второй слой, соответственно испытывает недостаток электронов и называется дырочной областью (в электронике места, в которых должны быть электроны, но они там отсутствуют, называются дырками). Граница между этими слоями называется электронно-дырочный p-n переход. В зависимости от типа полупроводника свойства перехода могут быть другими. Тогда он называется дырочно-электронный n-p переход.


Принцип работы фотоэлемента

Под воздействием света эти два слоя начинают взаимодействовать, электроны из одного слоя начинают замещать дырки в другом слое. При этом возникает электродвижущая сила, превращая, по сути, эти два слоя в электроды обычной батарейки.

Теперь, чтобы использовать эту электрическую энергию, остается только подпаять к поверхности каждого слоя тонкие проводники и подключить нагрузку. Следует отметить, что этот процесс не вызывает никаких химических реакций в полупроводнике, а, следовательно, солнечная батарея, набранная из таких фотопреобразователей, может служить очень долго.

Во многих странах, в исследовательских центрах проводятся работы, которые призваны решить проблему повышения эффективности солнечных батарей. Пробуются комбинации различных материалов для использования их в качестве фотоэлементов. В тонкослойные кремниевые элементы добавляют в различных пропорциях галлий, мышьяк, медь, кадмий. Причем эти присадки могут быть как в чистом виде, так и в комбинациях материалов, например, арсенид галлия (GaAs).

Кроме того, на эффективность солнечных батарей большое влияние оказывает если не совпадение, то максимальная схожесть как физических (размеры), так и электрических (вольт-амперные характеристики) элементов, входящих в один солнечный модуль. В процессе эксплуатации солнечных батарей может возникнуть ситуация, при которой один или несколько фотопреобразователей могут быть затенены.

Таким образом, они на какой-то промежуток времени исключаются из рабочей конфигурации модуля. Но, будучи включенными в общую цепь, они могут разогреваться и, как следствие, выйти из строя. Отвод тепла от фотопреобразователей, постоянно облучаемых солнцем, также является достаточно серьезной проблемой, над решением которой работают многие ученые.

Разновидности солнечных батарей

Существуют несколько наиболее широко распространенных типов солнечных батарей. В первую очередь это, конечно же, солнечные панели, собранные на базе кремниевых фотопреобразователей. Наиболее высокая эффективность у модулей, изготовленных на базе монокристаллического кремния.


Монокристаллический модуль

Коэффициент полезного действия таких модулей по последним данным в некоторых случаях может достигать 23%. В среднем же достигается значение эффективности, равное 18%. Более дешевые панели собраны на базе поликристаллического кремния.

Эффективность таких фотопреобразователей ниже и средний показатель ее не превышает 16%. Однако за счет того, что поликристаллические элементы имеют прямоугольную форму, они более полно заполняют корпус модуля. Поэтому значения мощностей, вырабатываемых модулями на базе монокристаллического и поликристаллического кремния, будут отличаться друг от друга на весьма незначительную величину.


Поликристаллический модуль

Наиболее дешевые гелиевые батареи выполнены на базе аморфного кремния. Эти модули имеют наименьшую эффективность – порядка 8%, но и стоимость производимого электричества у этих устройств также самая низкая.


Модуль на базе аморфного кремния

Следует также отметить гелиевые панели на базе теллурида кадмия (CdTe), выполненные по тонкопленочной технологии. Пленка толщиной в несколько сотен микрометров из этого полупроводника наносится на панель. Производство этих панелей является наименее вредоносным по сравнению с производством панелей других видов. Эффективность этих батарей достигает 12%.


Модуль на базе теллурида кадмия

В последнее время получают распространение гелиевые модули на основе полупроводникового соединения, в состав которого входят индий, галлий, медь и селен (CIGS). Эти модули, как и модули из теллурида кадмия, изготавливаются по тонкопленочной технологии. Их эффективность достигает 15%.


Модуль на базе CIGS

Разумеется, потребителю вовсе не обязательно знать, как устроена и работает его домашняя солнечная электростанция. Ведь никого не интересует, как устроен, скажем, телевизор. Мы просто смотрим передачи. Но, покупая телевизор, мы уже знаем его характеристики, знаем фирму, которая его выпускает, слышали отзывы о нем.

А вот, чтобы выбрать себе оборудование для домашней электростанции, нужно иметь хотя бы приблизительное представление о том, что именно вы собираетесь приобрести и как это будет работать. И нет сомнений в том, что элементарные знания об устройстве тех или иных элементов помогут вам сделать правильный выбор.

Какие солнечные батареи бывают: устройство и применение.

Заботясь об окружающем мире и, в то же время, экономя бюджет во многих странах применяют альтернативные источники энергии. Какие солнечные батареи и где применяются узнаем в этой статье.

Область применения солнечных батарей

Человечество научилось пользоваться солнечной энергией во многих областях своей жизни. Какие существуют солнечные батареи и где именно применяются? Вот самые интересные факты:

  1. Электроника – уже давно во всем мире делают портативные устройства вроде калькуляторов, карманных фонариков и пр.
  2. Авиация – в данной области не так давно произошел прорыв: в Швейцарии создан самолет, использующий лишь солнечную энергию, запасая ее в батареи аккумулятора. Первый полет прототипа продолжался 26 часов.
  3. Электромобили – здесь применение солнечной энергии малоэффективно, КПД на уровне 10–15%. Поэтому много электричества для аккумулятора автомобиль запасти не может, к тому же солнце светит не всегда, сокращая тем самым суточный пробег.
  4. Энергообеспечение зданий – крыши домов некоторых тропических стран оборудованы солнечными батареями. Так значительно экономится электричество.
  5. Дороги – в 2014 открылась велодорожка в Голландии, выложенная солнечными панелями. Проект оказался недостаточно эффективен, но сейчас рассматривается строительство проезжих частей из солнечных батарей во Франции. По таким дорогам электромобили смогут передвигаться без подзарядки.
  6. Космос – здесь солнце светит постоянно и без помех для солнечного модуля, поэтому на космических аппаратах они устанавливаются повсеместно.
  7. Медицина – учеными из Южной Кореи была разработана солнечная батарея, вживляемая под кожу. Она тоньше волоса в 15 раз, ее цель – обеспечить имплантированное в тело оборудование бесперебойным электричеством.

Устройство и принцип работы солнечных батарей


Составные части солнечной батареи называются фотоэлементами. Соединение между ними параллельное и последовательное, а располагают их на каркасе из материалов, не проводящих электричество. Полупроводники работают благодаря фотогальваническому эффекту, означающему трансформацию лучистой энергии солнца в электричество.

Из чего делают солнечные батареи.

Для изготовления солнечных батарей используют кремний, это второй по распространенности химический элемент на Земле. У него высокая электропроводимость и хорошая способность притягивать солнечные лучи. Однако обычный кремний для данного производства не годится, его преобразовывают в пригодный, по специальной технологии. Изготовление такого кремния – очень дорогой и сложный процесс.

Бывают два вида фотоэлектрических преобразователей: на основе монокристаллического и поликристаллического кремния. Их производят по разной технологии. КПД первого равен 17,5%, а второго – менее 15%. Конструкция состоит из отдельных модулей, подключаемых между собой блоками.

Из чего делают солнечные батареи зависит от ее наиболее значимого параметра – полезной мощности. Расчет экономичности всей установки зависит именно от нее. Полезная мощность определяется по напряжению и силе тока на выходе, на которые влияет интенсивность лучей солнца.

В итоге электроэнергия переходит на хранение в аккумуляторы и накапливается там. Аккумулятор – это химический источник тока, который заряжается при контакте с потенциалом больше его собственного напряжения. Слабый солнечный свет снижает интенсивность заряда батареи аккумулятора, тогда она отдает энергию электроприемнику. Получается, что аккумуляторная батарея всегда функционирует в режиме разрядки и подзарядки.

Следить за этими процессами можно при помощи специального контроллера. Циклический заряд требует постоянного напряжения или постоянного заряда тока. Когда заряд батареи полон, к ней еще подключают резистор, поглощающий избыточную мощность.

Какие солнечные батареи можно изготовить своими руками?

Расчет собственной солнечной электростанции не должен сразу быть грандиозным и масштабным. Достаточно будет в первый раз сделать пробную панель небольшой площади, а потом, используя те же схемы, нарастить на конструкцию остальные элементы.

  1. Изготовление каркаса. Здесь расчет максимально простой, а материалом служат алюминиевые уголки, либо уже готовые рамы со стеклом. Покрытие может быть прозрачным и с минимальной пропускной способностью ИК-спектра, чтобы не спровоцировать нагревание кремниевых элементов. Менее подходящий – поликарбонат, а наиболее доступным можно считать стекло, оптимальное решение – плексиглас.
  2. Монтаж корпуса батареи. Необходимо включить в расчет дополнительное расстояние между модулями, около 3 мм. Схема требует предварительного изготовления рамы, соединение выполняют при помощи метизов. Чтобы расчет долговечности батареи оправдал себя, должна быть обеспечена максимальная герметичность конструкции. В раму закладывается лист прозрачного материала, прижимается и фиксируется, все должно хорошо просохнуть, чтобы испарения герметика не создали пленку на элементах. Соединение углов проводится согласно схемы метизами и шурупами.
  3. Пайка солнечных элементов. Кропотливый и сложный процесс, но если произвести расчет, самодельная солнечная батарея обойдется в 4 раза дешевле заводской панели. Сэкономить средства поможет покупка в интернете элементов с дефектами, которые не потеряли своей функциональности. Однако внешний вид всей конструкции несколько пострадает. Сперва необходимо припаять контакты, нужно быть аккуратным, так как солнечные элементы довольно хрупкие. Нужно изготовить картонную заготовку и по ней нарезать проводники. Ориентируйтесь схемы, на пайку уйдет много времени.
  4. Сборка солнечной панели. Соединение элементов проще проводить на разметочной подложке, в расчет площади нужно добавить 3–5 мм между каждой частью батареи. За основу можно взять лист фанеры, маркировать уголки на нем и закрепить элементы поочередно на монтажную ленту. Герметизация не нужна, однако такой способ крепления в полевых условиях не обеспечит долгую службу панели. Электрическая схема пайки подразумевает расположение «плюсовых» дорожек на лицевой, а «минусовых» на обратной стороне элементов. Далее следует нанесение флюса и припоя, а затем аккуратная пайка серебряных контактов. Клемма выводится на внешнюю сторону рамы. Соединение токовыводящих проводов должно быть изолировано, для этого могут быть использованы трубки для капельницы.

Интересное:

Сборка солнечных батарей своими руками.
Солнечная батарея из алюминиевых банок своими руками.
Изготовление солнечной панели своими руками.

Добросовестный расчет, качественное оборудование, четкая схема и усидчивость обеспечат долгое функционирование самодельной солнечной батареи для домашних нужд.

Недостатки и преимущества источников солнечной энергии

Устройство солнечной батареи можно охарактеризовать как с положительной, так и с отрицательной стороны.

Плюсы

  • все оборудование весит относительно немного;
  • отсутствие необходимости прокладывания к опорам кабеля;
  • расходы на установку и обслуживание панелей сведено к минимуму;
  • оборудование при работе не издает абсолютно никакого шума;
  • энергия солнца экологически чистая;
  • общедоступность и неисчерпаемость;
  • солнечные батареи способны прослужить довольно долго.

Минусы

  • процесс сборки и расчет требуют большого труда;
  • ночью батареи не вырабатывают электричество;
  • солнечные панели очень громоздкие;
  • низкий КПД – в электричество преобразуется около 20% энергии, остальное рассеивается в виде тепла;
  • эффективность работы панелей снижается при пасмурной погоде;
  • оборудование чувствительно к загрязнениям и механическим повреждениям.

Интересное: 7 мифов об альтернативной энергии.

Факторы, которые необходимо учитывать при конструировании солнечных батарей:

  • региональные особенности солнечной активности;
  • расчет угла наклона солнечной панели и возможность ее слежения за солнцем;
  • насколько энергоемко оборудование, которое будет питать солнечная батарея;
  • важно, из чего изготовлены панели (оргстекло, кремний, стекло и т.д.).

как сделать самодельную солнечную панель

Солнечные батареи — источник получения энергии, которую можно направить на выработку электричества или тепла для малоэтажного дома. Вот только солнечные батареи имеют высокую стоимость и недоступны большинству жителей нашей страны. Согласны?

Другое дело, когда сделана солнечная батарея своими руками — затраты значительно уменьшаются, а работает такая конструкция ничуть не хуже, чем панель промышленного производства. Поэтому, если вы всерьез задумываетесь о приобретении альтернативного источника электроэнергии, попытайтесь сделать его своими руками – это не очень сложно.

В статье речь пойдет об изготовлении солнечных батарей. Мы расскажем, какие материалы, и инструменты для этого потребуются. А немного ниже вы найдете пошаговую инструкцию с иллюстрациями, которые наглядно демонстрируют ход работы.

Содержание статьи:

Коротко об устройстве и работе

Энергию солнца можно преобразовать в тепловую, когда энергоносителем является жидкость-теплоноситель или в электрическую, собираемую в аккумуляторах. Батарея представляет собой генератор, работающий на принципе фотоэлектрического эффекта.

Преобразование энергии солнца в электроэнергию происходит после попадания солнечных лучей на пластины-фотоэлементы, которые являются основной частью батареи.

При этом световые кванты “отпускают” свои электроны с крайних орбит. Эти свободные электроны дают электрический ток, который проходит через контроллер и скапливается в аккумуляторе, а оттуда поступает энергопотребителям.

Галерея изображений

Фото из

Сборка солнечной батареи из кремниевых пластинок

Формирование плюсовой токоведущей дорожки

Создание минусовых токоведущих линий с задней стороны

Подключение проводника и блокирующего диода

В роли пластин-фотоэлементов выступают элементы из кремния. Кремниевая пластина с одной стороны покрыта тончайшим слоем фосфора или бора – пассивного химического элемента.

В этом месте под действием солнечных лучей высвобождается большое количество электронов, которые удерживаются фосфорной плёнкой и не разлетаются.

На поверхности пластины имеются металлические “дорожки”, на которых выстраиваются свободные электроны, образуя упорядоченное движение, т.е. электрический ток.

Чем больше таких кремниевых пластин-фотоэлементов, тем больше электрического тока можно получить. Подробнее о принципе работы солнечной батареи читайте .

Верхний слой пластин-фотоэлементов покрыт слоем, который не допускает отражение солнечного света от пластин, повышая их КПД

Материалы для создания солнечной пластины

Приступая к сооружению солнечной батареи необходимо запастись следующими материалами:

  • силикатные пластины-фотоэлементы;
  • листы ДСП, алюминиевые уголки и рейки;
  • жёсткий поролон толщиной 1,5-2,5 см;
  • прозрачный элемент, выполняющий роль основания для кремниевых пластин;
  • шурупы, саморезы;
  • силиконовой герметик для наружных работ;
  • электрические провода, диоды, клеммы.

Количество требуемых материалов зависит от размера вашей батареи, которая чаще всего ограничивается количеством доступных фотоэлементов. Из инструментов вам понадобиться: шуруповёрт или набор отвёрток, ножовка по металлу и дереву, паяльник. Для проведения испытаний готовой батареи понадобиться тестер-амперметр.

Теперь рассмотрим самые важные материалы более подробно.

Кремниевые пластины или фотоэлементы

Фотоэлементы для батарей бывают трёх видов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Поликристаллические пластины характеризуются низким КПД. Размер полезного действия составляет около 10 – 12 %, но зато этот показатель не понижается с течением времени. Продолжительность работы поликристаллов – 10 лет.

Солнечную батарею собирают из модулей, которые в свою очередь составляют из фотоэлектрических преобразователей. Батареи с жесткими кремниевыми фотоэлементами представляют собой некий сэндвич с последовательно расположенными слоями, закрепленными в алюминиевом профиле

Монокристаллические фотоэлементы могут похвастаться более высоким КПД – 13-25% и долгими сроками работы – свыше 25 лет. Однако со временем КПД монокристаллов снижается.

Монокристаллические преобразователи получают путем пиления искусственно выращенных кристаллов, что и объясняет наиболее высокую фотопроводимость и производительность.

Пленочные фотопреобразователи получают путем нанесения тонкого слоя аморфного кремния на полимерную гибкую поверхность

Гибкие батареи с аморфным кремнием – самые современные. Фотоэлектрический преобразователь у них напылен или наплавлен на полимерную основу. КПД в районе 5 – 6 %, но пленочные системы крайне удобны в укладке.

Пленочные системы с аморфными фотопреобразователями появились сравнительно недавно. Это предельно простой и максимально дешевый вид, но быстрее соперников теряющий потребительские качества.

Нецелесообразно использовать фотоэлементы разного размера. В данном случае максимальный ток, вырабатываемый батарей, будет ограничен током наиболее маленького по размеру элемента. Значит, более крупные пластины не будут работать на полную мощность.

При покупке фотоэлементов поинтересуйтесь у продавца способом доставки, большинство продавцов используют метод воскования, чтобы предотвратить разрушение хрупких элементов

Чаще всего для самодельных батарей используются моно- и поликристаллические фотоэлементы размером 3х6 дюймов, которые можно заказать в интернет-магазинах типа Е-бай.

Стоимость фотоэлементов достаточно высока, но многие магазины продают так называемые элементы группы В. Изделия, отнесённые к этой группе имеют брак, но пригодны к использованию, а их стоимость ниже, чем у стандартных пластин на 40-60%.

Большинство интернет-магазинов продают фотоэлементы комплектами по 36 или 72 фотоэлектрической преобразовательной пластины. Для соединения отдельных модулей в батарею потребуются шины, для подключения к системе нужны будут клеммы.

Галерея изображений

Фото из

Поликристаллическая фотоэлектрическая пластина

Лицевая и тыльная стороны кремниевой пластины

Монокристаллическая фотоэлектрическая пластина

Обратная сторона монокристаллической пластины

Каркас и прозрачный элемент

Каркас для будущей панели можно сделать из деревянных реек или алюминиевых уголков.

Второй вариант более предпочтителен по целому ряду причин:

  • Алюминий – лёгкий металл, не дающий серьёзной нагрузки на опорную конструкцию, на которую планируется установка батареи.
  • При проведении антикоррозийной обработки алюминий не подвержен воздействию ржавчины.
  • Не впитывает влагу из окружающей среды, не гниёт.

При выборе прозрачного элемента необходимо обратить внимание на такие параметры, как показатель преломления солнечного света и способность поглощать ИК-излучение.

От первого показателя напрямую будет зависеть КПД фотоэлементов: чем показатель преломления ниже, тем выше КПД кремниевых пластин.

Минимальный коэффициент светоотражения у плексиглас или более дешёвого его варианта – оргстекла. Чуть ниже показатель преломления света у поликарбоната.

От величины второго показателя зависит, будут ли нагреваться сами кремниевые фотоэлементы или нет. Чем меньше пластины подвергаются нагреванию, тем дольше они прослужат. ИК-излучения лучше всего поглощает специальное термопоглощающее оргстекло и стекло с ИК-поглощением. Немного хуже – обычное стекло.

Если есть возможность, то оптимальным вариантом будет использование в качестве прозрачного элемента антибликового прозрачного стекла.

По соотношению стоимости к показателям преломления света и поглощения ИК-излучения оргстекло – самый оптимальный вариант для изготовления гелиобатареи

Проект системы и выбор места

Проект гелиосистемы включает в себя расчёты необходимого размера солнечной пластины. Как было сказано выше, размер батареи, как правило, ограничен дорогостоящими фотоэлементами.

Гелиобатарея должна устанавливаться под определённым углом, который обеспечил бы максимальное попадание на кремниевые пластины солнечных лучей. Наилучший вариант – батареи, которые могут менять угол наклона.

Место установки солнечных пластин может быть самым разнообразным: на земле, на скатной или плоской крыше дома, на крышах подсобных помещений.

Единственное условие – батарея должна быть размещена на солнечной, не затененной высокой кроной деревьев стороне участка или дома. При этом оптимальный угол наклона необходимо вычислить по формуле или с применением специализированного калькулятора.

Угол наклона будет зависеть от месторасположения дома, времени года и климата. Желательно, чтобы у батареи была возможность менять угол наклона вслед за сезонными изменениями высоты солнца, т.к. максимально эффективно они работают при падении солнечных лучей строго перпендикулярно поверхности.

Для европейской части стран СНГ рекомендуемый угол стационарного наклона 50 – 60 º. Если в конструкции предусмотрено устройство для изменения угла наклона, то в зимний период лучше располагать батареи под 70 º к горизонту, в летнее время под углом 30 º

Расчёты показывают, что 1 квадратный метр гелиосистемы даёт возможность получить 120 Вт. Поэтому путём расчетов можно установить, что для обеспечения среднестатистической семьи электроэнергией в количестве 300 кВт в месяц необходима гелиосистема минимум в 20 квадратных метров.

Сразу установить такую гелиосистему будет проблематично. Но даже монтаж 5-ти метровой батареи поможет сэкономить электроэнергию и внести свой скромный вклад в экологию нашей планеты. Советуем также ознакомиться с принципом расчета необходимого количества .

Солнечная батарея может использоваться в качестве резервного энергоисточника при частом отключении централизованного энергоснабжения. Для автоматического переключения необходимо предусмотреть систему бесперебойного питания.

Подобная система удобна тем, что при использовании традиционного источника электроэнергии одновременно производится зарядка . Оборудование обслуживающее гелиобатарею размещается внутри дома, поэтому необходимо предусмотреть для него специальное помещение.

Размещая батареи на наклонной крыше дома, не забывайте об угле наклона панели, идеальный вариант, когда у батареи есть устройство для сезонного изменения угла наклона

Монтаж солнечной батареи по шагам

Выбрав место для размещения солнечной панели и оборудования для обслуживания гелиосистемы, а также имея в наличии все требуемые материалы и инструменты, можно начинать монтаж батареи.

При монтаже необходимо соблюдать технику безопасности, особенно осуществляя на крышу дома. Рассмотрим пошаговый алгоритм, как сделать солнечную батарею.

Шаг #1 – пайка контактов кремниевых пластин

Монтаж самодельной солнечной батареи часто начинается с пайки проводников фотоэлементов. Безусловно, если у вас есть возможность, то лучше всего купить фотоэлементы сразу с проводниками, т.к. пайка – очень непростая и кропотливая работа, занимающая много времени.

Пайка осуществляется следующим образом:

  1. Берётся кремниевый фотоэлемент без проводников и металлическая полоса-проводник.
  2. Проводники нарезаются при помощи картонной заготовки, их длина в 2 раза больше, чем размер кремниевой пластины.
  3. Проводник аккуратно выкладывается на пластину. На один элемент – два проводника.
  4. На место, где будет производиться спайка, необходимо нанести кислоту для работы с паяльником.
  5. Произвести пайку при помощи паяльника, аккуратно присоединив проводник к пластине.

В процессе пайки нельзя давить на силикатный элемент, т.к. он очень хрупкий и может разрушиться! Если вам посчастливилось, и вы приобрели фотоэлементы с готовыми контактами, то вы избавите себя от долгой и сложной работы, переходя сразу к изготовлению каркаса для будущей батареи.

Пайка контактов для бракованных фотоэлементов группы В производится так же и в том же направлении, что и для целых пластин

Шаг #2 – изготовление каркаса для солнечной батареи

Каркас – это место, куда будут устанавливаться фотоэлементы. Для изготовления каркаса берутся алюминиевые уголки и рейки, из которых складываются рамки. Рекомендуемый размер уголка – 70-90 мм.

На внутреннюю часть металлических уголков наносится силиконовый герметик. Герметизацию уголков необходимо произвести тщательно, от этого зависит долговечность всей конструкции.

После того, как алюминиевая рамка готова, приступаем к изготовлению заднего корпуса. Задний корпус представляет собой деревянный ящик из ДСП с невысокими бортиками.

Высокие борта будут создавать тень на фотоэлементах, поэтому их высота не должна превышать 2 см. Бортики привинчиваются при помощи саморезов и шуруповёрта.

Галерея изображений

Фото из

Изготовление корпуса для солнечной батареи

Вентиляционные отверстия в бортиках корпуса

Подложка для крепления кремниевых пластин

Окрашивание деталей корпуса для гидроизоляции

На дне ящика-корпуса из ДСП делаются вентиляционные отверстия. Расстояние между отверстиями примерно 10 см. В алюминиевую раму устанавливается прозрачный элемент (оргстекло, антибликовое стекло, плексиглас).

Прозрачный элемент прижимается и фиксируется, его крепление осуществляется при помощи метизов: 4 по углам, а также по 2 с длинных и по 1 с короткой стороны рамы. Метизы крепятся шурупами.

Каркас для гелиобатареи готов и можно приступать к самой ответственной части – монтажу фотоэлементов. Перед монтажом необходимо очистить оргстекло от пыли и обезжирить спиртсодержащей жидкостью.

Шаг #3 – монтаж кремниевых пластин-фотоэлементов

Монтаж и пайка кремниевых пластин – самая трудоёмкая часть работы по созданию солнечной панели своими руками. Сначала раскладываем фотоэлементы на оргстекло синими пластинами вниз.

Если вы впервые собирайте батарею, то можно воспользоваться подложкой для нанесения разметки, чтобы расположить пластины ровно на небольшом (3-5 мм) расстоянии друг от друга.

  1. Производим пайку фотоэлементов по следующей электросхеме: “+” дорожки расположены на лицевой стороне пластины, “-” – на обратной. Перед пайкой аккуратно наносит флюс и припой, чтобы соединить контакты.
  2. Производим пайку всех фотоэлементов последовательно рядами сверху вниз. Ряды затем должны быть также соединены между собой.
  3. Приступаем к приклеиванию фотоэлементов. Для этого наносим небольшое количество герметика на центр каждой кремниевой пластины.
  4. Переворачиваем получившиеся цепочки с фотоэлементами лицевой стороной (там, где синие пластины) вверх и размещаем пластины по разметке, которую нанесли ранее. Осторожно прижимаем каждую пластину, чтобы зафиксировать её на своём месте.
  5. Контакты крайних фотоэлементов выводим на шину, соответственно “+” и “-“. Для шины рекомендуется использовать более широкий проводник из серебра.
  6. Гелиобатарею необходимо оснастить блокирующим диодом, который соединяется с контактами и предотвращает разрядку аккумуляторов через конструкцию в ночное время.
  7. В дне каркаса сверлим отверстия для вывода проводов наружу.

Провода необходимо прикрепить к каркасу, чтобы они не болтались, сделать это можно используя силиконовый герметик.

Галерея изображений

Фото из

Подготовка кремниевых пластин к пайке

Сушка избавленных от воска элементов батареи

Вычерчивание абриса пластинок на подложке

Процесс пайки фотоэлектрических элементов батареи

Соединение кремниевых пластин в солнечную батарею

Соединение кремниевых пластин с лицевой стороны

Устройство медных токоведущих шин прибора

Проверка работоспособности части батареи

Шаг #4 – тестирование батареи перед герметизацией

Тестирование солнечной панели необходимо проводить до её герметизации, чтобы иметь возможность устранить неисправности, которые часто возникают во время пайки. Лучше всего производить тестирование после спайки каждого ряда элементов – так значительно проще обнаружить, где контакты соединены плохо.

Для тестирования вам понадобиться обычный бытовой амперметр. Измерения необходимо проводить в солнечный день в 13-14 часов, солнце не должно быть скрыто облаками.

Выносим батарею на улицу и устанавливаем в соответствии с ранее рассчитанным углом наклона. Амперметр подключаем к контактам батареи и проводим измерение тока короткого замыкания.

Смысл тестирования заключается в том, что рабочая сила электрического тока должна быть на 0,5-1,0 А ниже, чем ток короткого замыкания. Показания прибора должны быть выше 4,5 А, что говорит о работоспособности гелиобатареи.

Если тестер выдаёт меньшие показания, то где-то наверняка нарушена последовательность соединения фотоэлементов.

Обычно самодельная , сконструированная из фотоэлементов группы В выдаёт показания 5-10 А, что на 10-20% ниже, чем у солнечных панелей промышленного производства.

Галерея изображений

Фото из

Шаг 9: После проверки работоспособности частей батареи, запаянных на подложке, их располагают в корпусе

Шаг 10: Подложки с пластинами внутри корпуса фиксируются на четыре шурупа. Провод, соединяющий части батареи, выводится через вентиляционные отверстия

Шаг 11: К каждой из половин сооружаемой батареи последовательно подключается диод Шоттки. Его минус подключается к плюсу системы

Шаг 12: Для вывода проводов из корпуса высверливается отверстие. Провода скреплены узлом, чтобы не болтались, и зафиксированы герметиком

Шаг 13: После нанесения герметика необходимо сделать технологический перерыв, отпущенный на полимеризацию состава

Шаг 14: К выведенному из солнечной батареи проводу подсоединяется двухконтактный разъем. Принадлежащая ему розетка крепится на аккумуляторе прибора, который будет заряжать батарея

Шаг 15: После сборки обеих частей прибора и вывода силовой линии наружу батарею закрывают заранее подготовленным экраном

Шаг 16: Перед герметизацией стыков гелиоприбора еще раз проводится проверка работоспособности, чтобы вовремя устранить отошедшие контакты, если они будут обнаружены

Установка обеих частей батареи в подготовленный корпус

Крепление основы солнечной батареи внутри корпуса

Установка блокирующего диода Шоттки

Вывод из корпуса наружу проводов прибора

Ожидание затвердевания герметика

Крепление двухконтактного разъема к проводу

Установка светопропускающего экрана на прибор

Контроль работоспособности перед герметизацией

Шаг #5 – герметизация уложенных в корпус фотоэлементов

Герметизацию можно производить, только убедившись, что батарея работает. Для герметизации лучше всего использовать эпоксидный компаунд, но учитывая, что расход материала будет большой, а стоимость его составляет примерно 40-45 долларов. Если дороговато, то вместо него можно применять всё тот же силиконовый герметик.

Используя силиконовой герметик, отдавайте предпочтения тому, на упаковке которого указано, что он подходит для использования при минусовых температурах

Существует два способа герметизации:

  • полная заливка, когда панели заливаются герметиком;
  • нанесение герметика на пространство между фотоэлементами и на крайние элементы.

В первом случае герметизация будет более надёжной. После заливки герметик должен схватиться. Затем сверху устанавливается оргстекло и плотно прижимается к пластинам, покрытым силиконом.

Для обеспечения амортизации и дополнительной защиты между задней поверхностью фотоэлементов и каркасом из ДСП многие мастера советуют устанавливать прокладку из жёсткого поролона шириной 1,5-2,5 см.

Делать это необязательно, но желательно, учитывая, что кремниевые пластины достаточно хрупкие и легко повреждаются.

После установки оргстекла на конструкцию ставят груз, под действием которого происходит выдавливание пузырьков воздуха. Солнечная батарея готова и после повторного тестирования её можно устанавливать в заранее выбранное место и подключать к гелиосистеме вашего дома.

Выводы и полезное видео по теме

Обзор фотоэлементов, заказанных в китайском интернет-магазине:

Видео-инструкция по изготовлению солнечной батареи:

Сделать солнечную батарею своими руками – не простая задача. КПД большинства таких батарей ниже, чем у панелей промышленного производства на 10-20%. Самое важное при конструировании солнечной батареи – правильно выбрать и установить фотоэлементы.

Не пытайтесь сразу создать огромную по площади панель. Попробуйте сначала соорудить маленький прибор, чтобы понять все нюансы этого процесса.

У вас есть практические навыки создания солнечных батарей? Поделитесь, пожалуйста, своим опытом с посетителями нашего сайта – пишите комментарии в расположенном ниже блоке. Там же можно задать вопросы по теме статьи.

из чего делают, принцип работы и характеристики

СодержаниеПоказать

Устройство солнечной батареи и принцип ее работы зависит от того, из каких материалов и по какой технологии она изготовлена. Поэтому надо разобраться в особенностях основных вариантов, чтобы понимать, в чем их отличия и выбрать подходящее решение для использования. Все данные актуальны для качественных изделий, дешевые батареи могут не соответствовать заявленным параметрам, так как зачастую изготавливаются с нарушениями технологии.

Стандартная конструкция жесткой солнечной батареи.

Терминология

Основные термины, используемые в этой сфере:

  1. Солнечная энергия – электричество, которое получают от солнца при использовании панелей.
  2. Солнечная инсоляция – показывает, сколько солнечного света приходится на квадратный метр поверхности, расположенной перпендикулярно лучам.
  3. Фотоэлектрические элементы – модули, способные преобразовывать солнечный свет в электрическую энергию. Обычно вырабатывают от 1 до 2 Вт энергии, но есть и более производительные варианты.
  4. Фотогальваническая система – комплект оборудования, преобразовывающий свет солнца в электроэнергию.
  5. Солнечные батареи или панели – группа фотоэлектрических элементов, сгруппированных в большой модуль и соединенных последовательным или последовательно-параллельным способом. Обычно в одну батарею входит от 36 до 40 сегментов.
  6. Массив – несколько солнечных панелей, соединенных чтобы получить нужное количество тока.
  7. Каркасные модули – конструкции в алюминиевом каркасе, прочные и герметичные.
  8. Бескаркасные элементы – гибкие варианты, их используют в условиях меньших нагрузок.
  9. Киловатт-час (кВт) – стандартный показатель измерения электрической мощности.
  10. КПД (эффективность) – солнечных панелей. Показывает, какое количество солнечной энергии, попавшей на поверхность, преобразуется в электричество. Обычно показатель составляет 15-24%.
  11. Деградация – уменьшение емкости солнечных батарей, происходящее по естественным причинам. Измеряется в процентах от первоначальных показателей.
  12. Пиковые нагрузки – моменты, когда требуется наибольшее количество электроэнергии.
  13. Кристаллический кремний – сырье для изготовления солнечных панелей. Самый распространенный и долговечный вариант на сегодня.
  14. Аморфный кремний – состав, нанесенный на поверхность методом испарения и закрытый защитным составом.
  15. Полупроводники – вещества, которые при определенных условиях могут проводить ток. Сюда относится большинство новых материалов, используемых при производстве солнечных батарей.
  16. Инвертор – устройство для преобразования постоянного тока в переменный.
  17. Контроллер – регулирует выходное напряжение с солнечных модулей для правильной зарядки аккумуляторов.

Карта инсоляции на территории России.

Это только самые распространенные термины, есть и дополнительные варианты. Но даже знание основ поможет намного лучше разобраться в теме.

Категории качества

Чтобы оценить качество солнечной панели, надо в первую очередь выяснить класс использованного для производства фотоэлектрических элементов сырья. От этого зависят эффективность и срок службы готовых изделий. Основных классов 4:

  1. Grade A – лучший вариант, в котором отсутствуют любые повреждения и трещины. Однородность заполнения и гладкость поверхности гарантируют высокие эксплуатационные характеристики, которые чаще всего даже выше, чем заявлено в документации. Кроме того, этот вариант имеет самый низкий показатель деградации и сохраняет хорошие характеристики длительный срок.
  2. Grade B немного хуже по качеству, на поверхности могут быть дефекты. Но при этом чаще всего использование позволяет получить изделия, сопоставимые по эффективности с классом А. Показатели деградации на порядок хуже, поэтому теряют первоначальные характеристики быстрее.
  3. Grade C – вариант, в котором могут быть достаточно серьезные дефекты – от трещин до сколов и других повреждений. По цене такие модули намного дешевле, но и их эффективность не бывает больше 15%. Недорогое решение, которое подойдет для небольших нагрузок.
  4. Grade D – про сути, это отходы, остающиеся после изготовления фотоэлементов, которые не должны использоваться для изготовления батарей. Но многие не очень честные производители, особенно из Азии, применяют их при производстве. Показатели работы у этого варианта крайне низкие.

Лучше выбирать первый вариант, на крайний случай подойдет и второй. Только они смогут обеспечить нормальную эффективность и будут служить долгое время.

Защитная пленка на солнечных панелях тоже должна быть качественной.

Ламинирующий материал EVA – это специальная пленка, которая располагается с лицевой стороны и может использоваться на изнаночной. Главное назначение – защита рабочих элементов от неблагоприятных воздействий без создания помех для солнечного света. Качественные варианты служат около 25 лет, некачественные – от 5 до 10. Определить разновидность на глаз невозможно, поэтому проще исходить из цены – у добротных вариантов она не будет низкой.

В видео на примере наглядно разбирают, как воздействии солнечного света возникает электрический ток.

Принцип работы

Разъяснить особенности работы солнечной батареи достаточно сложно, но можно разобраться в общих моментах:

  1. Когда солнечный свет попадает на фотоэлементы, там начинается образование неравновесных электронно-дырочных пар.
  2. Из-за избытка электронов они начинают перемещаться в нижний слой полупроводника.
  3. Во внешней цепи возникает напряжение. Положительный полюс возникает на контакте р-слоя, а на контакте n-слоя появляется отрицательный.
  4. Если к фотоэлементам подключена аккумуляторная батарея, то получается замкнутый круг и постоянно движущиеся электроны обеспечивают постепенный заряд аккумулятора.
  5. Обычные кремниевые модули относятся к однопереходным элементам, которые могут генерировать энергию только от определенного спектра солнечного света. Именно из-за этого КПД оборудования невысокий.
  6. Чтобы решить проблему, изготовители разработали каскадные варианты, они могут брать энергию у разных лучей солнечного спектра. Это повышает КПД, но за счет высокой себестоимости производства цена таких панелей намного выше.
  7. Та энергия, которая не преобразовалась в электричество, превращается в тепло, поэтому солнечные батареи греются в процессе работы до 55 градусов, а полупроводниковые – до 180. Причем по мере нагревания эффективность работы солнечной батареи снижается.

Простейшая схема работы солнечной батареи.

Кстати! Наибольшая эффективность работы солнечных панелей достигается в ясные зимние дни, когда света хватает, а низкая температура остужает поверхность.

Из чего сделаны

Чтобы изучить устройство солнечной батареи, нужно разобраться в основных разновидностях, так как технология производства имеет существенные различия в зависимости от используемого сырья:

  1. Батареи CdTe. Теллурид кадмия применяется при изготовлении пленочных модулей. Слоя в несколько сотен микрометров хватает для того, чтобы получить КПД порядка 11% или немного выше. Это откровенно низкий показатель, зато в пересчета на 1 Ватт мощности себестоимость электроэнергии получается как минимум на 30% дешевле, чем у традиционных вариантов из кремния. При том, что данная разновидность намного тоньше и легче.
  2. Тип CIGS. Аббревиатура обозначает, что в состав входят медь, индий, галлий и селен. Получается полупроводник, который также наносится небольшим слоем, но в отличие от первого варианта тут эффективность на порядок выше и составляет 15%.
  3. Типы GaAs и InP отличает возможность нанесения тонкого слоя в 5-6 мкм, при этом КПД будет составлять около 20%. Это новое слово в технологиях добычи электроэнергии из солнечного света. Благодаря высоким рабочим температурам батареи могут сильно нагреваться без потери эксплуатационных характеристики. Но из-за того, что при производстве используются редкоземельные материалы, себестоимость этого типа высока.
  4. Батареи с квантовыми точками (QDSC). В них в качестве поглощающего материала для преобразования солнечной энергии используются квантовые точки вместо традиционных объемных материалов. За счет особенностей настройки запрещенных зон можно делать многопереходные модули, поглощающие солнечную энергию более эффективно.
  5. Аморфный кремний наносится методом испарения и имеет неоднородную структуру. Он не отличается высокими показателями КПД, но однородная поверхность очень хорошо поглощает даже рассеянный свет.
  6. Поликристаллические варианты изготавливаются путем плавления кремния и его охлаждения при определенных условиях, чтобы получить однонаправленные кристаллы. Одно из самых распространенных решений благодаря дешевизне производства и неплохим показателям КПД.
  7. Монокристаллические элементы состоят из цельных кристаллов, разрезанных на тонкие пластинки и легированных фосфором. Самое долговечное решение, у которого низкие показатели деградации и срок службы, составляющий как минимум 30 лет, но чаще всего больше на 10-15 лет.

Батареи из теллурида кадмия – одни из самых выгодных по себестоимости киловатта электроэнергии.

Кстати! Эффективность того или иного варианта зависит от технологии производства, поэтому ее нужно уточнять.

Читайте также

Виды и способы установки солнечных панелей

 

Плюсы и минусы солнечных панелей

У каждого типа есть свои особенности, которые стоит учесть при выборе, чтобы решить, какой вид подойдет больше всего:

  1. Монокристаллические панели имеют самый большой КПД и за счет этого экономится площадь под размещение модулей. Они служат как минимум 25 лет и медленно теряют показатели мощности. При этом поверхность очень чувствительна к загрязнениям, ее нужно часто мыть. А цена самая высокая из всех вариантов на основе кремния.
  2. Поликристаллические варианты не так эффективно поглощают солнечные лучи, но зато лучше работают при рассеянном освещении. По соотношению цены и качества они выгоднее, но занимают больше места из-за меньшего КПД.
  3. Батареи из аморфного кремния можно размещать где угодно, в том числе и на стенах зданий, так как они хорошо поглощают рассеянный свет. При невысоком КПД они имеют низкую цену, поэтому могут использоваться как эконом-вариант. При этом служат долго и не так боятся загрязнения поверхности.
  4. Варианты из редкоземельных металлов имеют схожие преимущества и недостатки, поэтому можно рассмотреть их вместе. По эффективности они превосходят классические панели, могут наноситься на пленку, что удобно. Температурный диапазон у них больше, поэтому нагревание не сказывается на эффективности работы. Но из-за высокой цены и редкости металлов такие варианты не используются массово.

Вариант с размещением на стенах упрощает работу по монтажу.

Где используются

Все рассмотренные варианты можно устанавливать в частном секторе, чтобы получать электроэнергию от солнца и сэкономить на энергоресурсах или даже добиться полной автономности. Что касается использования, нужно учесть несколько простых рекомендаций:

  1. Монокристаллические и поликристаллические варианты лучше всего ставить на кровле или на земле, предварительно соорудив каркас под нужным углом. Желательно, чтобы угол наклона регулировался, так можно подстраиваться под солнце.
  2. Пленочные модули можно располагать где угодно, как на стенах, так и на крышах. Они хорошо работают даже если лучи попадают на поверхность не под прямым углом, что очень важно.
  3. В промышленных масштабах также отдают предпочтение пленочным батареям как более дешевым и простым в монтаже.

Пленочные варианты проще устанавливать при больших объемах работы.

Есть несколько разновидностей солнечных батарей, но около 90% рынка занимают традиционные кремниевые модели благодаря низкой цене и хорошим характеристикам. Можно выбрать и одно из полупроводниковых решений, но тогда придется потратить в полтора-два раза больше средств.

Солнечные батареи: все про альтернативный источник энергии — solar-energ.ru. Солнечная батарея своими руками: как сделать в домашних условиях

Человечество в целях заботы об экологии и экономии денежных средств начало использовать альтернативные источники энергии, к которым, в частности, принадлежат солнечные батареи. Покупка такого удовольствия обойдется довольно дорого, но не составляет сложности сделать данное устройство своими руками. Поэтому вам не помешает узнать, как самому сделать солнечную батарею. Об этом и пойдет речь в нашей статье.

Устройство и принципы работы

Солнечные батареи — устройства, генерирующие электроэнергию с помощью фотоэлементов.

Прежде чем говорить о том, как сделать солнечную батарею своими руками, необходимо понять устройство и принципы ее работы. Солнечная батарея включает в себя фотоэлементы, соединенные последовательно и параллельно, аккумулятор, накапливающий электроэнергию, инвертор, преобразующий постоянный ток в переменный и контроллер, следящий за зарядкой и разрядкой аккумулятора.

Как правило, фотоэлементы изготавливают из кремния, но его очистка обходится дорого, поэтому в последнее время начали использовать такие элементы, как индий, медь, селен.

Каждый фотоэлемент является отдельной ячейкой, генерирующей электроэнергию. Ячейки сцеплены между собой и образуют единое поле, от площади которого зависит мощность батареи. То есть, чем больше фотоэлементов, тем больше электроэнергии генерируется.

Для того чтобы изготовить солнечную панель своими руками в домашних условиях, необходимо понимать сущность такого явления, как фотоэффект. Фотоэлемент – кремниевая пластинка, при попадании света на которую с последнего энергетического уровня атомов кремния выбивается электрон. Передвижение потока таких электронов вырабатывает постоянный ток, который впоследствии преобразуется в переменный. В этом и заключается явление фотоэффекта.

Преимущества

Солнечные батареи имеют следующие преимущества:

  • безвредность для экологии;
  • долговечность;
  • бесшумная работа;
  • легкость изготовления и монтажа;
  • независимость поставки электричества от распределительной сети;
  • неподвижность частей устройства;
  • незначительные финансовые затраты;
  • небольшой вес;
  • работа без механических преобразователей.

Разновидности

Солнечные батареи подразделяются на следующие виды.

Кремниевые

Кремний — самый популярный материал для батарей.

Кремниевые батареи также делятся на:

  1. Монокристаллические: для производства таких батарей используется очень чистый кремний.
  2. Поликристаллические (дешевле монокристаллических): поликристаллы получают постепенным охлаждением кремния.

Пленочные

Такие батареи подразделяются на следующие виды:

  1. На основе теллурида кадмия (КПД 10%): кадмий обладает высоким коэффициентом светопоглощения, что и позволяет использовать его в производстве батарей.
  2. На основе селенида меди — индия: КПД выше, чем у предыдущих.
  3. Полимерные.

Солнечные батареи из полимеров начали изготавливать относительно недавно, обычно для этого используют фуреллены, полифенилен и др. Пленки из полимеров очень тонкие, порядка 100 нм. Несмотря на КПД 5%, батареи из полимеров имеют свои преимущества: дешевизна материала, экологичность, эластичность.

Аморфные

КПД аморфных батарей составляет 5%. Такие панели изготавливаются из силана (кремневодорода) по принципу пленочных батарей, поэтому их можно отнести, как к кремниевым, так и к пленочным. Аморфные батареи эластичны, генерируют электричество даже в непогоду, поглощают свет лучше других панелей.

Материалы

Для изготовления солнечной батареи потребуются следующие материалы:

  • фотоячейки;
  • алюминиевые уголки;
  • диоды Шоттки;
  • силиконовые герметики;
  • проводники;
  • крепежные винты и метизы;
  • поликарбонатный лист/оргстекло;
  • паяльное оборудование.

Эти материалы обязательны для того, чтобы сделать солнечную батарею своими руками.

Выбор фотоэлементов

Чтобы сделать солнечную батарею для дома своими руками, следует правильно подобрать фотоэлементы. Последние подразделяются на монокристаллические, поликристаллические и аморфные.

КПД первых составляет 13%, но такие фотоэлементы малоэффективны в непогоду, внешне представляют собой ярко-синие квадраты. Поликристаллические фотоэлементы способны генерировать электроэнергию даже в непогоду, хотя их КПД всего лишь 9%, внешне темнее монокристаллических и срезаны по краям. Аморфные фотоячейки изготавливаются из гибкого кремния, их КПД составляет 10%, работоспособность не зависит от погодных условий, но изготовление таких ячеек слишком затратное, поэтому их редко используют.

Если вы планируете применять генерируемую фотоэлементами электроэнергию на даче, то советуем собрать солнечную батарею своими руками из поликристаллических ячеек, так как их КПД достаточно для ваших целей.

Следует покупать фотоячейки одной марки, так как фотоэлементы нескольких марок могут сильно отличаться — это может стать причиной возникновения проблем со сборкой батареи и ее функционированием. Следует помнить, что количество производимой ячейкой энергии прямо пропорционально ее размеру, то есть чем крупнее фотоячейка, тем больше электроэнергии она производит; напряжение ячейки зависит от ее типа, а никак не от размера.

Количество производимого тока определяется габаритами самого маленького фотоэлемента, поэтому следует покупать фотоячейки одинакового размера. Конечно же, не стоит приобретать дешевую продукцию, ведь это значит, что она не прошла проверку. Также не следует покупать фотоэлементы, покрытые воском (многие производители покрывают фотоячейки воском для сохранности продукции при перевозке): при его удалении можно испортить фотоэлемент.

Расчеты и проект

Устройство солнечной панели своими руками — несложная задача, главное, подойти к ее выполнению ответственно. Чтобы изготовить солнечную панель своими руками, следует подсчитать дневное потребление электроэнергии, затем узнать среднесуточное солнечное время в вашей местности и рассчитать нужную мощность. Таким образом, станет понятно, сколько ячеек и какого размера нужно приобрести. Ведь как было сказано выше, генерируемый ячейкой ток зависит от ее габаритов.

Зная необходимый размер ячеек и их количество, нужно рассчитать габариты и вес панели, после чего необходимо выяснить выдержит ли кровля или другое место, куда планируется установка солнечной батареи, задумываемую конструкцию.

Устанавливая панель, следует не только выбрать самое солнечное место, но и постараться закрепить ее под прямым углом к солнечным лучам.

Этапы работы

Корпус

Прежде чем начать делать солнечную панель своими руками, необходимо соорудить для нее каркас. Он защищает батарею от повреждений, влаги и пыли.

Корпус собирается из влагостойкого материала: фанеры, покрытой влагоотталкивающим средством, или алюминиевых уголков, к которым силиконовым герметиком приклеивается оргстекло или поликарбонат.

При этом нужно соблюдать отступы между элементами (3-4 мм), так как необходимо учитывать расширение материала при повышении температуры.

Пайка элементов

Фотоэлементы выкладываются на лицевую сторону прозрачной поверхности, так, чтобы расстояние между ними со всех сторон было 5 мм: таким образом учитывается возможное расширение фотоячеек при повышении температуры.

Фиксируются преобразователи, имеющие два полюса: положительный и отрицательный. Если вы хотите увеличить напряжение, соединяйте элементы последовательно, если ток — параллельно.

Во избежание разрядки аккумулятора ночью, в единую цепь, состоящую из всех необходимых деталей, включают диод Шоттки, подсоединяя его к плюсовому проводнику. Затем все элементы спаивают между собой.

Сборка

В готовый каркас размещаются спаянные преобразователи, на фотоячейки наносится силикон — все это накрывается слоем из ДВП, закрывается крышкой, а места соединений деталей обрабатываются герметиком.

Даже городской житель может сделать и разместить солнечную батарею на балконе своими руками. Желательно, чтобы балкон был застеклен и утеплен.
Вот мы и разобрали, как сделать солнечную батарею в домашних условиях, оказалось, это совсем несложно.

Идеи из подручных материалов

Можно сделать солнечную батарею своими руками из подручных материалов. Рассмотрим самые популярные варианты.

Солнечная батарея из фольги

Многие удивятся, узнав, что фольгу можно применять для изготовления солнечной батареи своими руками. На самом деле, в этом нет ничего удивительного, ведь фольга увеличивает отражающие способности материалов. Например, для уменьшения перегрева панелей, их кладут на фольгу.

Как сделать солнечную батарею из фольги?

Нам понадобится:

  • 2 «крокодильчика»;
  • медная фольга;
  • мультиметр;
  • соль;
  • пустая пластиковая бутылка без горлышка;
  • электрическая печь;
  • дрель.

Очистив медный лист и вымыв руки, отрезаем кусок фольги, кладем его на раскаленную электроплиту, нагреваем полчаса, наблюдая почернение, затем убираем фольгу с плиты, даем остыть и видим, как от листа отслаиваются куски. После нагревания оксидная пленка пропадает, поэтому черный оксид можно аккуратно удалить водой.

Затем вырезается второй кусок фольги такого же размера, как и первый, две части сгибаются, опускаются в бутылку так, чтобы у них не было возможности соприкоснуться.

Далее «крокодильчики» прицепляются к панели, провод от ненагретой фольги — к плюсу, от нагретой — к минусу, соль растворяют в воде и выливают раствор в бутылку. Батарея готова.

Также фольгу можно применять для подогрева. Для этого ее необходимо натянуть на раму, к которой затем нужно подсоединить шланги, подведенные, например, к лейке с водой.

Вот мы и узнали, как самому сделать солнечную батарею для дома из фольги.

Солнечная батарея из транзисторов

У многих дома завалялись старые транзисторы, но не все знают, что они вполне подойдут для изготовления солнечной батареи для дачи своими руками. Фотоэлементом в таком случае является полупроводниковая пластина, находящаяся внутри транзистора. Как же изготовить солнечную батарею из транзисторов своими руками? Сначала необходимо вскрыть транзистор, для чего достаточно срезать крышку, так мы сможем разглядеть пластину: она небольших размеров, чем и объясняется низкий КПД солнечных батарей из транзисторов.

Далее нужно проверить транзистор. Для этого используем мультиметр: подключаем прибор к транзистору с хорошо освещенным p-n переходом и замеряем ток, мультиметр должен зафиксировать ток от нескольких долей миллиампера до 1 или чуть больше; далее переключаем прибор в режим измерения напряжения, мультиметр должен выдать десятые доли вольта.

Прошедшие проверку транзисторы размещаем внутри корпуса, например, листового пластика и спаиваем. Можно изготовить такую солнечную батарею своими руками в домашних условиях и использовать ее для зарядки аккумуляторов и радиоприемников маленькой мощности.

Солнечная батарея из диодов

Также подходят для сборки батарей старые диоды. Сделать солнечную батарею своими руками из диодов совсем несложно. Нужно вскрыть диод, оголив кристалл, являющийся фотоэлементом, затем нагревать диод 20 секунд на газовой плите, и, когда припой расплавится, извлечь кристалл. Остается припаять вытащенные кристаллы к корпусу.

Мощность таких батарей невелика, но для электропитания небольших светодиодов ее достаточно.

Солнечная батарея из пивных банок

Такой вариант изготовления солнечной батареи своими руками из подручных средств большинству покажется очень странным, но сделать солнечную батарею своими руками из пивных банок просто и дешево.

Корпус сделаем из фанеры, на которую поместим поликарбонат или оргстекло, на задней поверхности фанеры зафиксируем пенопласт или стекловату для изоляции. Фотоэлементами нам послужат алюминиевые банки. Важно выбрать именно банки из алюминия, так как алюминий менее подвержен коррозии, чем, например, железо и обладает лучшим теплообменом.

Далее в нижней части банок проделываются отверстия, крышка срезается, и ненужные элементы загибаются для обеспечения лучшей циркуляции воздуха. Затем необходимо очистить банки от жира и грязи с помощью специальных средств, не содержащих кислоты. Далее необходимо герметично скрепить банки между собой: силиконовым гелем, выдерживающим высокие температуры, или паяльником. Обязательно нужно очень хорошо просушить склеенные банки в неподвижном положении.

Прикрепив банки к корпусу, окрашиваем их в черный цвет и закрываем конструкцию оргстеклом или поликарбонатом. Такая батарея способна нагревать воду или воздух с последующей подачей в помещение.

Мы рассмотрели варианты того, как сделать солнечную панель своими руками. Надеемся, что теперь у вас не возникнет вопроса, как сделать солнечную батарею.

Видео

Как сделать солнечные батареи своими руками – видео урок.

Принцип работы и устройство солнечной батареи.

В этой статье мы рассмотрим устройство солнечной батареи. Современная солнечная батарея представляет собой соединение фотоэлементов, которое может преобразовывать солнечное электромагнитное излучение в электрическую энергию. Ее основными составляющими являются фотоэлементы, от количества которых зависит вырабатываемое напряжение и сила тока. Устройство солнечной батареи основано на явлении внутреннего фотоэлектрического эффекта, которое впервые было открыто ученым Эдмондом Беккерелем еще в 1839 году. В 1873 году другой ученый Уиллоуби Смит заметил такой эффект во время облучения солнечным светом пластины селена. Наибольшее распространение солнечные батареи получили, начиная с середины двадцатого века.

Виды солнечных батарей и их предназначение


В настоящее время используется несколько разновидностей солнечных батарей. Все они отличаются длительным сроком эксплуатации, который зачастую превышает 30 лет. Это достигается за счет отсутствия в конструкции механических компонентов и расходных частей.

Наибольшее распространение сегодня получили три вида фотоэлементов:

  1. Монокристаллические;
  2. Поликристаллические;
  3. Тонкопленочные;
  4. Аморфные.

Самым распространенным видом являются поликристаллические панели, которые отличаются оптимальным соотношением цены и эффективности. В большинстве случаев их КПД достигает 12-13 %. Эти батареи отличаются кристаллической структурой и синим цветом. Монокристаллические солнечные панели являются более эффективными, так как их КПД достигает 15-16%. Однако, с учетом стоимости одного ватта мощности, их использовании обходиться дороже.

Хотите экономить на электроэнергии? Тогда узнайте, как работают ветряные мельницы и где выгодно их устанавливать

Монокристаллические и поликристаллические батареи имеют схожие функции:

  • освещение жилых домов, хозяйств, тепличных комплексов;
  • освещение садовой, парковой зоны, улиц;
  • обеспечение электроэнергией медицинские и телекоммуникационные приборы;
  • энергоснабжение систем подачи и очистки воды;
  • подзарядка ноутбуков, мобильных телефонов.

Тонкопленочные обладают самым низким КПД, который не превышает 12%. В то же время, за счет низкой цены фотоэлементов, которые входят в конструкцию, один ватт мощности электроэнергии здесь обходиться дешевле, чем в остальных батареях. К тому же, тонкопленочные панели занимают в 2-3 раза большую площадь, чем моно- и поликристаллические. Поэтому, их лучше использовать для питания крупных систем мощностью более 10 кВт. Интересное: Солнечные батареи на 5 кВт.

Из какого материала изготавливаются солнечные батареи

Наиболее распространенным материалом для изготовления солнечных панелей является кристаллический кремний. Монокристаллический кремний изготавливается по методу Чохральского или тигельным способом. Более простым для изготовления считается поликристаллический кремний, который по структуре представляет собой совокупность кристаллов. Также в качестве материала для изготовления фотоэлементов может использоваться ленточный кремний. Для его производства два тонких слоя кремния накладываются друг на друга. Он более дешевый в изготовлении, но и менее эффективный.

Узнайте больше о самовозобновляемой и бесплатной энергии будущего. Солнечные батареи в действии.

Устройство солнечной батареи: основные элементы

Современное устройство солнечной батареи предусматривает обязательное наличие прочного корпуса, в котором будут размещаться фотоэлементы. Это связано с хрупкостью панелей. Корпус представляет собой коробку небольшого размера с небольшими боковыми ребрами. При этом, ребра не должны мешать солнечному свету попадать на выходы элементов. Размер коробки определяется количеством солнечных элементов. Следующим элементом конструкции является подложка, которая располагается в корпусе прямо на панели. Перед установкой подложки корпус нужно обработать специальными красками, которые имеют стойкость к микроорганизмам и влаге. Кроме того, в корпусе должны быть вентиляционные отверстия, за счет которых будет поддерживаться определенная температура и выводиться газы, которые выделяются при работе батареи в незначительном количестве.

Технология изготовления

Вначале следует спаять фотоэлементы между собой. Если вы купили элементы с металлическими выступами, то тогда можно просто спаять ушки батарей между собой. Делать это нужно очень внимательно и аккуратно. После пайки соединенные компоненты необходимо приклеить к подложке в верхней части панели. Это лучше сделать при помощи специального силиконового клея, который никак не препятствует проникновению солнечных лучей. Кроме того, он способствует нормальному теплообмену. Однако, не переусердствуйте с клеем, так как это может привести к повреждению батарей. Клеить нужно только центр клеток. Далее все элементы нужно соединить с проводом, который подается в одной из заранее предусмотренных вентиляционных отверстий. Для закрепления провода к солнечным элементам лучше использовать силиконовую замазку. Интересное: Солнечная панель своими руками.

На следующем этапе поверх панелей устанавливается оргстекло. Однако, до этого следует подключить диод Шоттки от чувствительных теплопроводящих компонентов. Этот диод послужит блокирующим устройством, которое защитит фотоэлементы при перепадах напряжения. Кроме того, диод Шоттки будет отключать питание системы при маленькой мощности электросети. Так аккумуляторы, заряжаемые от солнца, не будут разряжаться при прекращении питания. Когда диод будет подключен, можно ставить оргстекло и закреплять его винтами. Технология изготовления солнечных панелей является достаточно простой и понятной. Единственное, важно правильно соблюдать последовательность соединения, иначе вся система не будет работать.

Как работает солнечная батарея

Принцип работы солнечной батареи основан на наличии полупроводника в виде двух пластин, соединенных друг с другом. Каждая пластина изготавливается из кремния с использованием дополнительных примесей. Благодаря этому пластины обладают своими уникальными свойствами. Первая из них имеет избыток валентных электронов, а вторая имеет недостаток этих электронов. Эти полупроводники получили название n и p. Если эти полупроводники соединить в единое целое, то можно получить PN-переход в месте контакта между ними. В то время, когда на батарею попадают прямые солнечные лучи, на обеих сторонах этого перехода начинают накапливаться положительные и отрицательные плавающие нагрузки. В результате генерируется напряжение и возникает магнитное поле. Если подсоединить к такому элементу провод, по нему потечет электричество.

Выясняем: когда стоит устанавливать солнечные батареи и как быстро они окупаются?

Как подключить солнечную батарею

Как только вы изготовите солнечную панель, можно начинать заниматься ее подключением. Можно не подключать ее напрямую к сети, чтобы избежать потерь электроэнергии. То есть, желательно установить автономную систему с аккумуляторами. Они будут заряжаться от солнечных батарей каждый день и быстро разряжаться. При этом, глубина разрядки может быть довольно существенной. Поэтому, аккумуляторы могут быстро выйти из строя. Для того, чтобы этого не произошло, лучше оставить подключение к сети через гибридный батарейный инвертор. Это устройство будет отдавать фотоэлементам приоритет при распределении нагрузки. Инвертор не будет отдавать излишки электроэнергии в сеть, а будет передавать ее на аккумуляторы. Такой вариант является одним из наиболее оптимальных. Эта система состоит из гибридного инвертора, контроллера заряда солнечных панелей и аккумуляторов. Такой механизм сможет работать не только как основная, но и как резервная система электропитания.

Как изготавливаются солнечные панели? Части панели солнечных батарей

Время чтения: 3 минуты

Солнечная энергия вошла в массовое производство как самый дешевый источник энергии в мире, заставляя многих людей задумываться, как солнечные фотоэлектрические системы могут быть такими эффективными и недорогими, при этом обеспечивая «зеленую» энергию. Ответ на этот вопрос означает понимание того, как работает солнечная энергия, как производятся солнечные панели и из каких частей состоит солнечная панель. Большинство панелей, доступных на рынке, изготовлены из монокристаллического, поликристаллического или тонкопленочного («аморфного») кремния.В этой статье мы расскажем о различных способах изготовления солнечных элементов и о том, какие детали необходимы для производства солнечных батарей.

Узнайте, сколько будут стоить солнечные панели в вашем районе в 2020 году

Основные выводы о производстве солнечных панелей

  • Солнечные панели обычно изготавливаются из нескольких ключевых компонентов: кремния, металла и стекла
  • Стандартные панели либо изготавливаются из монокристаллического или поликристаллического кремния
  • Начните сравнивать расценки на солнечные батареи на EnergySage Marketplace, чтобы увидеть варианты оборудования бок о бок

Как производятся солнечные панели? Моно против поли против тонкой пленки

Солнечные фотоэлектрические элементы состоят из нескольких частей, наиболее важными из которых являются кремниевые элементы.Кремний, имеющий атомный номер 14 в периодической таблице, является неметаллом с проводящими свойствами, которые дают ему способность преобразовывать солнечный свет в электричество. Когда свет взаимодействует с кремниевой ячейкой, он приводит в движение электроны, что инициирует электрический ток. Это известно как «фотоэлектрический эффект».

Однако кремниевые элементы сами по себе не могут обеспечить электричеством ваш дом. Они соединены с металлическим корпусом и проводкой, которые позволяют электронам солнечного элемента улетучиваться и обеспечивать полезную мощность.Кремний имеет несколько различных структур ячеек: одноэлементных (монокристаллических), поликристаллических или аморфных форм, чаще всего ассоциируются с тонкопленочными солнечными панелями.

Процесс производства солнечных панелей

Монокристаллические солнечные панели производятся из одного большого кремниевого блока и изготавливаются в формате кремниевых пластин. Процесс производства включает в себя вырезание отдельных пластин из кремния, которые можно прикрепить к солнечной панели.Монокристаллические кремниевые элементы более эффективны, чем поликристаллические или аморфные солнечные элементы. Производство отдельных монокристаллических пластин является более трудоемким и, следовательно, более дорогим в производстве, чем поликристаллические ячейки. Монокристаллические элементы имеют отчетливый черный эстетический вид и часто ассоциируются с гладким внешним видом панелей премиум-класса SunPower.

Поликристаллические солнечные элементы также являются кремниевыми элементами, но вместо того, чтобы формироваться в виде большого блока и разрезаться на пластины, они производятся путем плавления нескольких кристаллов кремния вместе.Многие молекулы кремния плавятся, а затем повторно соединяются вместе в самой панели. Поликристаллические ячейки менее эффективны, чем монокристаллические, но они также менее дороги. Они имеют голубоватый оттенок, который часто ассоциируется с эстетикой солнечных панелей SolarWorld.

Наконец, аморфные кремниевые элементы создают гибкие материалы для солнечных панелей, которые часто используются в тонкопленочных солнечных панелях. Ячейки из аморфного кремния не являются кристаллическими и вместо этого прикреплены к подложке, такой как стекло, пластик или металл.По этой причине тонкопленочные солнечные панели верны своему названию: они тонкие и гибкие, в отличие от стандартных. Несмотря на то, что аморфные солнечные элементы являются идеальным вариантом использования для универсальности, они очень неэффективны по сравнению с моно- или поликристаллическими элементами. First Solar наиболее известна производством тонкопленочных панелей в США.

После создания уникального типа солнечных элементов производители солнечных панелей завершают процесс, подключая электрические системы, добавляя антибликовое покрытие к элементам и корпусу. вся система в металлическом и стеклянном корпусе.

Из каких частей состоит солнечная панель?

Материалы, из которых изготовлены элементы для солнечных панелей, являются лишь частью самой солнечной панели. Процесс производства солнечных панелей обычно включает шесть различных компонентов. Если вы интересуетесь материалами для солнечных панелей и любите делать это своими руками, возможно, вам даже понадобится гипотетический список «ингредиентов» для самостоятельного производства. Вот общие части солнечной панели:

  1. Кремниевые солнечные элементы
  2. Металлический каркас (обычно алюминий)
  3. Стеклянный лист для корпуса
  4. Стандартный провод 12 В
  5. Провод шины
  6. Оргстекло

В дополнение к солнечному сами элементы, стандартная солнечная панель включает в себя стеклянный кожух в передней части панели, чтобы добавить прочность и защиту кремниевым фотоэлектрическим элементам.Под стеклянной внешней стороной панели есть кожух для изоляции и защитный задний лист, который помогает ограничить рассеивание тепла и влажность внутри панели. Изоляция особенно важна, потому что повышение температуры приведет к снижению эффективности, что приведет к снижению мощности солнечной панели. Таким образом, производители фотоэлектрических элементов должны прилагать все усилия, чтобы обеспечить улавливание света без перегрева технологии.

Стоит ли делать солнечные панели самостоятельно?

Для тех, кто хочет установить солнечную батарею и рассматривает вариант «сделай сам», следует учитывать ряд факторов, таких как гарантии, долговечность продукции, эффективность и общая стоимость.Чтобы получить полное представление об этой поломке, ознакомьтесь с нашей статьей о плюсах и минусах солнечных батарей. Если вы ищете индивидуальную оценку стоимости солнечной установки в зависимости от вашего местоположения и типа крыши, попробуйте наш солнечный калькулятор. Для домовладельцев, заинтересованных в получении предложений от местных предварительно проверенных установщиков, посетите EnergySage Solar Marketplace.

Узнайте, сколько будут стоить солнечные панели в вашем районе в 2020 году

.

Из чего сделаны солнечные батареи?

Прочтите обновление этой статьи за 2018 год здесь.

Это описание предоставлено REC Group

Солнечная панель или модуль из кристаллического кремния - это серия соединенных между собой кремниевых элементов, соединенных вместе в цепь. В большем количестве мощность, производимая этими взаимосвязанными ячейками, может быть увеличена и использована в качестве системы производства электроэнергии.

Солнечные панели бывают разных размеров для разных целей.Текущее стандартное предложение на рынке - это панели с 60 ячейками, при этом более крупные панели с 72 ячейками используются для крупномасштабных установок. Панели меньшего размера также доступны и используются на рынке автономных систем, где пространство в дефиците, или для макетов, где требуется большая гибкость.

Методы производства ячеек
На уровне структуры ячеек существуют различные виды панелей, такие как монокремний, поликремний или тонкопленочные. Монокремниевые элементы изготавливаются из монокристалла.Их более высокая стоимость производства приводит к тому, что они дороже, чем другие типы. Монокремниевые элементы часто имеют более высокий рейтинг эффективности, чем другие технологии. Однако, поскольку они вырезаны из цилиндрических слитков, они не полностью покрывают панель без значительных отходов, что снижает эффективность всей панели.

Поликремниевые элементы состоят из плавления различных кристаллов кремния. Их производство дешевле, чем монокристаллических, но они менее эффективны. В последнее время в технологию поликремния вкладывается гораздо больше, и лучшие панели из поликремния теперь демонстрируют производительность, равную или близкую к моно.Это, вкупе с более низкой стоимостью, привело к тому, что поликремний стал основным материалом для солнечных панелей.

Тонкопленочные солнечные элементы создаются в процессе совместного испарения химических веществ на стеклянном листе. У них более низкая эффективность преобразования, чем у кремния, но они уменьшают количество материала, необходимого для создания ячейки.

Повышение эффективности ячеек
В нынешней сложной рыночной ситуации необходимо существенное снижение производственных затрат, чтобы повысить привлекательность солнечной энергии и сделать ее более доступной.

В условиях избыточного предложения и постоянного падения цен производители сосредотачиваются на снижении производственных затрат при одновременном повышении производительности. Среди основных направлений новых разработок - улучшенная кристаллизация пластин, технология селективного эмиттера, пассивация задней поверхности и технология металлизации.

На характеристики панели влияют не только новые технологии, но и изменения в методах сборки, материалах конструкции и качестве компонентов.Стандартная панель состоит из стеклянного слоя на передней стороне, изолирующего слоя и защитного заднего листа на задней стороне панели. Это помогает снизить стоимость производства панели и позволяет лучше отводить тепло от панели. Некоторые панели используют стеклянный слой спереди и сзади. Это увеличивает прочность панели и дополнительную защиту от повреждений и попадания влаги в ячейки, но снижает эффективность ячейки, поскольку тепло не так легко рассеивается, что, в свою очередь, влияет на производительность панели.

Панель обычно окружает алюминиевая рама. Это добавляет прочности конструкции, позволяет ей выдерживать большую нагрузку и защищает края стекла от ударов и поломок, а также от попадания влаги. Использование рамы имеет дополнительное преимущество, позволяющее устанавливать панель различными способами, например, с помощью монтажных зажимов, болтов или выдвижной системы.

Перспективы
Несмотря на текущую неопределенность в отрасли, вызванную избыточным предложением панелей, будущее фотоэлектрической панели все еще выглядит светлым.Спрос на возобновляемые источники энергии растет, а потенциальные области применения солнечной энергии расширяются. В то же время повышение эффективности элементов, методов сборки и материалов конструкции делает солнечную энергию конкурентоспособной.

Прочтите обновление этой статьи за 2018 год здесь.

.

солнечных панелей: из чего они сделаны?

Возможно, вы знаете, на что способны солнечные панели - преобразовывать солнечный свет в энергию, экономить деньги, создавать энергетическую независимость, повышать стоимость вашего дома при перепродаже - но как они это делают? Из чего сделаны солнечные панели?

Кремний: номер 14 в таблице Менделеева, номер 1 в солнечных панелях

После кислорода кремний является вторым по распространенности элементом в земной коре. Это хорошая новость для нас, учитывая, что от 90 до 95% солнечных панелей на рынке сделаны из кристаллического кремния (c-Si).

Кремний имеет ряд преимуществ, в том числе:

  • Огромное изобилие на планете, что помогает поддерживать низкую стоимость панелей.
  • Высокая эффективность преобразования, позволяющая большему количеству солнечного света превращаться в электричество.
  • Нетоксичный состав, что делает его экологически чистым.
  • Длительный срок службы, который, в свою очередь, позволяет сроку действия большинства гарантий на панели превышать 20 лет.

Панели из кристаллического кремния бывают двух видов: монокристаллические и поликристаллические.Монокристаллические солнечные элементы состоят из пластин, вырезанных из одного большого чистого кристалла, и, как правило, имеют более высокий уровень эффективности. Поликристаллические солнечные элементы изготавливаются путем плавления нескольких кристаллов вместе в чане, и они менее эффективны и менее дороги, чем монокристаллические панели. Вы можете узнать больше о моно- и поликристаллических панелях в нашем блоге здесь.

Сторонники кремния: проводка, стекло и другое оборудование

Там, где кремний - это электростанция панели, для преобразования и передачи электричества необходимо множество других компонентов.Лента шинопровода - проводка, обычно сделанная из алюминия, - позволяет электричеству течь между кремниевыми солнечными элементами. Чем больше ленты на сборной шине, тем выше эффективность панелей. Стеклянный корпус с высоким коэффициентом пропускания защищает переднюю часть ячеек, а задний лист обеспечивает электрическую изоляцию на нижней части модуля. Металлический каркас, обычно из алюминия, скрепляет панель, защищает край стекла и позволяет устанавливать модули.

Тонкопленочные панели

Во многих проектах промышленного масштаба используются тонкопленочные панели, которые состоят из множества тонких пленок полупроводников, наложенных поверх пластика, стекла или металла.Тонкопленочные панели более гибкие и примерно в 20 раз легче, чем панели из кристаллического кремния. Однако они обычно менее эффективны. Для среднего дома с ограниченным пространством на крыше более высокая эффективность кристаллических кремниевых панелей делает их более подходящим выбором.

.

Как изготавливаются солнечные панели?

Производство кристаллических солнечных модулей

Солнечный фотоэлектрический модуль состоит из солнечных элементов, стекла, этиленвинилацетата, заднего листа и рамы. Узнайте больше о компонентах и ​​процессе изготовления солнечной панели.

На рынке доступны 3 типа солнечных панелей:

Таким образом, на уровне структуры ячеек существуют различные типы материалов для производства, такие как монокремний, поликремний или аморфный кремний (AnSi).Первые два типа ячеек производятся примерно одинаково. Читайте ниже об этапах производства кристаллической солнечной панели.

Шаг 1: Песок

Все начинается с сырья, которым в нашем случае является песок. Большинство солнечных панелей изготовлено из кремния, который является основным компонентом природного пляжного песка. Кремний широко доступен, что делает его вторым наиболее доступным элементом на Земле. Однако преобразование песка в высококачественный кремний требует больших затрат и является энергоемким процессом.Кремний высокой чистоты получают из кварцевого песка в дуговой печи при очень высоких температурах.

Шаг 2: Слитки

Кремний собирается, как правило, в виде твердых пород. Сотни этих пород плавятся вместе при очень высоких температурах, чтобы сформировать слитки в форме цилиндра. Для достижения желаемой формы используется стальная цилиндрическая печь. В процессе плавления уделяется внимание тому, чтобы все атомы были идеально выровнены в желаемой структуре и ориентации.В процесс добавляется бор, который придает силикону положительную электрическую полярность.

Монокристаллические элементы изготавливаются из монокристалла кремния. Mono Silicon имеет более высокую эффективность преобразования солнечной энергии в электричество, поэтому цена монокристаллических панелей выше.

Полисиликоновые элементы изготавливаются путем плавления нескольких кристаллов кремния вместе. Вы можете узнать их по виду разбитого стекла, который создают различные кристаллы кремния. После остывания слитка производят шлифовку и полировку, оставляя слиток с плоскими сторонами.

Шаг 3: Вафли

Вафли - это следующий шаг в производственном процессе. Слиток кремния разрезают на тонкие диски, также называемые пластинами. Проволочная пила используется для точной резки. По толщине пластина аналогична листу бумаги.

Поскольку чистый кремний блестит, он может отражать солнечный свет. Чтобы уменьшить количество потерянного солнечного света, на силиконовую пластину нанесено антибликовое покрытие.

Шаг 4: Солнечные элементы

Следующие ниже процессы превратят пластину в солнечный элемент, способный преобразовывать солнечную энергию в электричество.

Каждая пластина обрабатывается и на каждую поверхность добавляются металлические проводники. Проводники придают пластине решетчатую матрицу на поверхности. Это обеспечит преобразование солнечной энергии в электричество. Покрытие будет способствовать поглощению солнечного света, а не его отражению.

В камере, похожей на печь, фосфор тонким слоем рассеивается по поверхности пластин. Это зарядит поверхность отрицательной электрической ориентацией. Комбинация бора и фосфора дает переход между положительным и отрицательным полюсами, что имеет решающее значение для правильного функционирования фотоэлемента.

Шаг 5: от солнечной батареи к солнечной панели

Солнечные элементы спаяны вместе с использованием металлических соединителей для соединения элементов. Солнечные панели состоят из солнечных элементов, объединенных в матричную структуру. Текущие стандартные предложения на рынке:

  • Панели на 48 ячеек - подходят для крыш небольших жилых домов.

  • Панели на 60 ячеек - это стандартный размер.

  • Панели на 72 ячейки - используются для крупномасштабных инсталляций.

Наиболее распространенной системой с точки зрения кВтч для домов в Великобритании является солнечная система мощностью 4 кВтч.

После сборки ячеек на лицевую сторону, обращенную к солнцу, добавляется тонкий слой (около 6-7 мм) стекла. Задний лист изготовлен из высокопрочного материала на полимерной основе. Это предотвратит попадание воды, грязи и других материалов на панель сзади. Впоследствии добавляется распределительная коробка, чтобы обеспечить соединения внутри модуля.

Когда рама собрана, все складывается в единое целое. Рама также обеспечит защиту от ударов и погодных условий. Использование рамы также позволит установить панель различными способами, например, с помощью монтажных зажимов.

EVA (этиленвинилацетат) - это клей, который связывает все вместе. Очень важно, чтобы качество герметика было высоким, чтобы он не повредил клетки в суровых погодных условиях.

Шаг 6: Тестирование модулей

Когда модуль готов, проводится тестирование, чтобы убедиться, что ячейки работают должным образом.STC (Стандартные условия испытаний) используются в качестве точки отсчета. Панель помещается во флэш-тестер на заводе-изготовителе. Тестер обеспечивает мощность излучения, эквивалентную 1000 Вт / м2, температуру ячейки 25 ° C и массу воздуха 1,5 г. Электрические параметры записываются, и вы можете найти эти результаты в технических характеристиках каждой панели. Рейтинги покажут выходную мощность, эффективность, напряжение, ток, ударную нагрузку и температурную стойкость.

Кроме STC, каждый производитель использует NOCT (номинальная рабочая температура ячейки).Используемые параметры более близки к «реальному» сценарию: рабочая температура разомкнутого модуля при освещенности 800 Вт / м2, температура окружающей среды 20 ° C, скорость ветра 1 м / с. Опять же, рейтинги NOCT можно найти в листе технических характеристик.

Очистка и осмотр - это заключительные этапы производства перед тем, как модуль будет готов к отправке домой или на предприятие.

Исследования и разработки в области солнечной энергетики направлены на снижение стоимости солнечных панелей и повышение эффективности.Отрасль производства солнечных панелей становится все более конкурентоспособной и, согласно прогнозам, станет более популярной, чем традиционные источники энергии, такие как ископаемое топливо.

Получите предложения от проверенных поставщиков сегодня, заполнив контактную форму вверху страницы! Услуга бесплатна и ни к чему не обязывает!

.

Из чего сделаны солнечные батареи?

Из чего сделаны солнечные панели?

Солнечные панели изготовлены из кремния. Кремний (Si) - неметаллический химический элемент в большом количестве, который составляет почти 30% земной коры и является седьмым по распространенности элементом во Вселенной. Чтобы сделать солнечные элементы, составляющие кристаллическую солнечную панель, кристаллический кремний разрезают на тонкие пластины - толщиной в несколько миллиметров. Затем они обрезаются по форме и полируются.LG производит солнечные элементы для наших панелей в Гуми, Корея.

Некоторые ключевые факты о солнечной энергии:

Солнечная панель, также называемая солнечным модулем, состоит из 72 или 60 солнечных элементов. Они электрически соединены между собой последовательно и параллельно и зажаты между стеклом и пластиком, а затем обрамлены. Типичная солнечная панель с 60 монокристаллическими элементами вырабатывает от 250 до 300 Вт ватт при открытом напряжении около 38 вольт постоянного тока.

Солнечная батарея - это группа солнечных панелей, соединенных вместе.

Солнечная система - это солнечная батарея, соединенная вместе с электронным оборудованием, таким как преобразователь постоянного тока в переменный, и другим оборудованием, таким как автоматические выключатели, для завершения полностью функциональной солнечной энергетической системы.

.

типов солнечных панелей: каковы ваши варианты?

Последнее обновление 15.07.2020

Большинство доступных в настоящее время солнечных панелей подходят к одному из трех типов: монокристаллический , поликристаллический (также известный как мультикристаллический) и тонкопленочный . Эти солнечные панели различаются по способу изготовления, внешнему виду, производительности, стоимости и установке, для которой каждая из них лучше всего подходит.

В зависимости от типа установки, которую вы рассматриваете, один вариант может быть более подходящим, чем другие.

Основные типы солнечных батарей

Существует три основных типа солнечных панелей: монокристаллические , поликристаллические и тонкопленочные . У каждого типа есть свои уникальные преимущества и недостатки, и тип солнечной панели, наиболее подходящий для вашей установки, будет зависеть от факторов, специфичных для вашей собственности и желаемых характеристик системы.

Тип солнечной панели Преимущества Недостатки
Монокристаллический
  • Высокая эффективность / производительность
  • Эстетика
поликристаллический
  • Более низкая эффективность / производительность
Тонкопленочная
  • Портативный и гибкий
  • Легкий
  • Эстетика
  • Самая низкая эффективность / производительность

Ниже мы разберем некоторые общие вопросы и проблемы, связанные с солнечными панелями, а также о том, как разные типы панелей имеют разные характеристики.

Из чего сделаны разные солнечные панели?

Для производства электричества солнечные элементы изготавливаются из полупроводникового материала, преобразующего свет в электричество. Наиболее распространенным материалом, используемым в качестве полупроводника в процессе производства солнечных элементов, является кремний.

Монокристаллические и поликристаллические солнечные панели

Как монокристаллические, так и поликристаллические солнечные панели имеют элементы, изготовленные из кремниевых пластин. Чтобы построить монокристаллическую или поликристаллическую панель, пластины собираются в ряды и столбцы, чтобы сформировать прямоугольник, покрытый стеклянным листом и обрамленный вместе.

Хотя оба этих типа солнечных панелей имеют элементы из кремния, монокристаллические и поликристаллические панели различаются по составу самого кремния. Монокристаллические солнечные элементы вырезаны из одного чистого кристалла кремния. В качестве альтернативы поликристаллические солнечные элементы состоят из фрагментов кристаллов кремния, которые плавятся вместе в форме перед тем, как разрезать их на пластины.

Тонкопленочные солнечные панели

В отличие от монокристаллических и поликристаллических солнечных панелей, тонкопленочные панели изготавливаются из различных материалов.Наиболее распространенный тип тонкопленочных солнечных панелей изготавливается из теллурида кадмия (CdTe). Чтобы изготовить этот тип тонкопленочной панели, производители помещают слой CdTe между прозрачными проводящими слоями, которые помогают улавливать солнечный свет. Этот тип тонкопленочной технологии также имеет стеклянный слой сверху для защиты.

Тонкопленочные солнечные панели также могут быть изготовлены из аморфного кремния (a-Si), который аналогичен составу монокристаллических и поликристаллических панелей. Хотя в составе этих тонкопленочных панелей используется кремний, они не состоят из твердых кремниевых пластин.Скорее они состоят из некристаллического кремния, помещенного поверх стекла, пластика или металла.

Наконец, панели из селенида меди, индия, галлия (CIGS) являются еще одним популярным типом тонкопленочной технологии. Панели CIGS имеют все четыре элемента, размещенные между двумя проводящими слоями (например, стеклом, пластиком, алюминием или сталью), а электроды размещаются спереди и сзади материала для улавливания электрических токов.

Как выглядят разные типы солнечных панелей?

Различия в материалах и производстве вызывают различия во внешнем виде для каждого типа солнечных батарей:

Монокристаллические солнечные панели

Если вы видите солнечную панель с черными элементами, скорее всего, это монокристаллическая панель.Эти ячейки кажутся черными из-за того, как свет взаимодействует с чистым кристаллом кремния.

В то время как сами солнечные элементы черные, у монокристаллических солнечных панелей есть различные цвета для их задних панелей и рам. Задний лист солнечной панели чаще всего бывает черным, серебристым или белым, а металлические рамки - черным или серебристым.

Солнечные панели поликристаллические

В отличие от монокристаллических солнечных элементов, поликристаллические солнечные элементы имеют тенденцию иметь голубоватый оттенок из-за того, что свет отражается от кремниевых фрагментов в элементе иначе, чем от чистой монокристаллической кремниевой пластины.

Как и монокристаллические, поликристаллические панели имеют разные цвета для задних листов и рам. Чаще всего обрамление поликристаллических панелей бывает серебристым, а задние листы - серебристыми или белыми.

Тонкопленочные солнечные панели

Самым большим эстетическим фактором, отличающим тонкопленочные солнечные панели, является их тонкость и низкий профиль. Как следует из названия, тонкопленочные панели часто тоньше, чем другие типы панелей.Это связано с тем, что ячейки внутри панелей примерно в 350 раз тоньше, чем кристаллические пластины, используемые в монокристаллических и поликристаллических солнечных батареях.

Важно помнить, что, хотя сами тонкопленочные элементы могут быть намного тоньше традиционных солнечных элементов, вся тонкопленочная панель может быть такой же по толщине, как монокристаллическая или поликристаллическая солнечная панель, если она включает в себя толстую рамку. Есть клеящиеся тонкопленочные солнечные панели, которые располагаются как можно ближе к поверхности крыши, но есть более прочные тонкопленочные панели с рамой толщиной до 50 миллиметров.

Что касается цвета, тонкопленочные солнечные панели могут быть как синего, так и черного оттенка, в зависимости от того, из чего они сделаны.

Что такое двусторонние солнечные панели?

Двусторонние солнечные панели могут улавливать солнечный свет как с передней, так и с задней стороны панели, тем самым производя больше электроэнергии, чем традиционные солнечные панели сопоставимого размера. Многие двусторонние солнечные панели будут иметь прозрачный задний лист, чтобы солнечный свет мог проходить через панель, отражаться от поверхности земли и обратно вверх к солнечным элементам на задней стороне панели.Эти солнечные панели обычно производятся из монокристаллических солнечных элементов, но существуют и поликристаллические двусторонние солнечные панели.

Мощность и эффективность солнечных панелей

Каждый тип солнечных панелей различается по мощности, которую они могут производить.

Монокристаллические и поликристаллические солнечные панели

Из всех типов панелей монокристаллические, как правило, имеют наивысший КПД и мощность. Монокристаллические солнечные панели могут достигать эффективности более 20 процентов, в то время как поликристаллические солнечные панели обычно имеют эффективность от 15 до 17 процентов.

Монокристаллические солнечные панели, как правило, вырабатывают больше энергии, чем другие типы панелей, не только из-за их эффективности, но и потому, что они входят в состав модулей с более высокой мощностью. Большинство монокристаллических солнечных панелей имеют мощность более 300 Вт (Вт), а некоторые в настоящее время даже превышают 400 Вт. С другой стороны, поликристаллические солнечные панели, как правило, имеют меньшую мощность.

Это не означает, что монокристаллические и поликристаллические солнечные панели физически не одинакового размера - на самом деле, оба типа солнечных панелей имеют тенденцию поставляться с 60 кремниевыми элементами каждый, с вариантами 72 или 96 элементов (обычно для крупномасштабных установок ).Но даже при том же количестве ячеек монокристаллические панели способны производить больше электроэнергии.

Тонкопленочные солнечные панели

Тонкопленочные солнечные панели, как правило, имеют более низкий КПД и мощность, чем монокристаллические или поликристаллические разновидности. Эффективность будет варьироваться в зависимости от конкретного материала, используемого в ячейках, но обычно они имеют КПД около 11 процентов.

В отличие от монокристаллических и поликристаллических солнечных панелей, которые выпускаются в стандартизированных вариантах с 60, 72 и 96 элементами, тонкопленочная технология не имеет единых размеров.Таким образом, мощность передачи от одной тонкопленочной панели к другой в значительной степени зависит от ее физического размера. Вообще говоря, мощность на квадратный фут монокристаллической или поликристаллической солнечной панели будет превосходить технологию тонкопленочных панелей.

Есть ли в каких-либо солнечных панелях более 96 ячеек?

Хотя это и не так распространено, как панели на 60, 72 или 96 элементов, некоторые производители солнечных панелей производят солнечные панели с половинными ячейками, что существенно удваивает количество солнечных элементов в панели.Половинные солнечные элементы - это монокристаллические или поликристаллические солнечные элементы, разрезанные пополам с помощью лазерного резака. Урезав солнечные элементы пополам, солнечные панели могут получить незначительный выигрыш в эффективности и долговечности.

Различные типы солнечных панелей имеют разную стоимость

Производственные процессы различаются между монокристаллическими, поликристаллическими и тонкопленочными; Таким образом, каждый тип панелей имеет свою цену.

Монокристаллические солнечные панели

Из всех типов солнечных панелей монокристаллические панели, вероятно, будут самым дорогим вариантом.Во многом это связано с производственным процессом - поскольку солнечные элементы сделаны из монокристалла кремния, производители должны нести расходы на создание этих кристаллов. Этот процесс, известный как процесс Чохральского, является энергоемким и приводит к потере кремния (который позже может быть использован для производства поликристаллических солнечных элементов).

Поликристаллические солнечные панели

Поликристаллические солнечные панели обычно дешевле, чем монокристаллические солнечные панели.Это связано с тем, что ячейки изготовлены из фрагментов кремния, а не из одного чистого кристалла кремния. Это позволяет значительно упростить процесс производства ячеек, что снижает затраты производителей и, в конечном итоге, конечных пользователей.

Тонкопленочные солнечные панели

Сколько вы платите за тонкопленочные солнечные панели, во многом будет зависеть от типа тонкопленочной панели; CdTe, как правило, является самым дешевым типом солнечных панелей в производстве, в то время как солнечные панели CIGS намного дороже в производстве, чем CdTe или аморфный кремний.

Независимо от стоимости самой панели, общая стоимость установки тонкопленочной солнечной панели может быть ниже, чем установка системы монокристаллических или поликристаллических солнечных панелей из-за дополнительных трудозатрат. Установка тонкопленочных солнечных панелей менее трудоемка, поскольку они легче и более маневренны, что упрощает монтажникам возможность поднимать панели на крышу и закреплять их на месте. Это означает снижение затрат на рабочую силу, что может способствовать снижению общей стоимости солнечной установки.

Тип панели, наиболее подходящий для вашей установки

По мере того, как вы выбираете тип солнечной панели для своей системы, большая часть вашего решения будет зависеть от особенностей вашей собственности и ситуации. У монокристаллических, поликристаллических и тонкопленочных панелей есть свои преимущества и недостатки, и решение, к которому вы должны двигаться, зависит от вашей собственности и ваших целей для солнечного проекта.

Владельцы недвижимости, у которых много места для солнечных панелей, могут заранее сэкономить деньги, установив менее эффективные и недорогие поликристаллические панели.Если у вас ограниченное пространство и вы хотите максимально сэкономить на счетах за электроэнергию, вы можете сделать это, установив высокоэффективные монокристаллические солнечные панели.

Что касается тонкопленочных панелей, то чаще всего выбирают этот тип солнечных панелей, если вы устанавливаете их на большую коммерческую крышу, которая не может выдержать дополнительный вес традиционного солнечного оборудования. Эти типы крыш также могут позволить себе более низкую эффективность тонкопленочных панелей, потому что у них больше места для их размещения.Кроме того, тонкопленочные панели иногда могут быть полезным решением для портативных солнечных систем, например, на жилых автофургонах или лодках.

Начните свое путешествие по солнечной энергии сегодня с EnergySage

EnergySage - это национальный онлайн-рынок солнечной энергии: когда вы регистрируете бесплатную учетную запись, мы связываем вас с солнечными компаниями в вашем районе, которые конкурируют за ваш бизнес с индивидуальными ценами на солнечную энергию, адаптированными к вашим потребностям. Ежегодно в EnergySage приходят более 10 миллионов человек, чтобы узнать о солнечной энергии, сделать покупки и инвестировать в нее.Зарегистрируйтесь сегодня, чтобы узнать, сколько солнечной энергии можно сэкономить.

.

Смотрите также