Изготовление дверей

Проектирование монолитных зданий


Проектное бюро BIM проект - Проектирование монолитных зданий

На сегодняшний день возведения из монолитного железобетона наиболее современная и перспективная техника строительства жилых и промышленных зданий и сооружений (в частности жилых высотных зданий). Главный принцип строительства, монолитных зданий - это возведение отдельных конструктивных элементов из бетонной смеси c армированием при использовании специализированной опалубки прямо на месте монтажа здания.

Грамотное создание проекта зданий из монолитного бетона промышленного или гражданского назначения это в первую очередь, трудоемкий заслуживающий большого внимания и ответственности, а так же надежного подхода процесс. Только в момент проектирования существует возможность своевременно, еще до начала выполнения работ, просчитать и спроектировать все наиболее целесообразные конструкции и связанные с ним затраты на строительство из монолитного бетона, от которых в будущем, по окончанию возведения здания, будет зависеть как долго и надежно будет оно служить. Именно в процессе создании проекта монолитных зданий становится понятно, что главное условие строительства, которое, в свою очередь, позволяет найти приемлемые эксплуатационные характеристики будущего здания и предусмотреть все возможные условие, способные повлиять на предполагаемую долговечность и надежность здания в зависимости от его назначения.

 

Преимущества монолитных зданий

Здание благодаря своим конструктивным решениям перераспределяет нагрузки на фундамент, чем нивелирует проблемы с осадкой здания. Монолитное жилое или промышленное здание не имеет швов и стыков между плитами, а так же исключены и трещины, что хорошо сказывается на звуконепроницаемости и что не менее важно на теплопроводность. Грамотно подобранные и использованные утеплители помогают экономить на энергозатратах потребителей. Монолитное здание позволяет уменьшить вес и объем используемых конструкций и в результате они на 25% легче построек из кирпича. За счет того, что требуется меньшее количество  материалов, уменьшается себестоимость возводимого объекта.

Грамотное создание проекта зданий из монолитного железобетона позволяет определить необходимый объем строительных материалов и инструментов, составить перечень оборудования, которые в дальнейшем потребуются в процессе строительства, т.е. произвести расчет будущих финансовых вложений связанных со строительством. Кроме этого в процессе создании проекта из монолитного железобетона зданий, производится детальный анализ будущих строительно-монтажных и отделочных работ, находится наиболее простая и рациональная форма производства железобетона прямо на строительной площадке. Устанавливаются и учитываются все моменты связанные со строительством, способных влиять на запланированный ход и продолжительность строительно-монтажных работ.

Создание проектов из монолитного железобетона зданий, в виду большего, чем в ходе обычного строительства, объемов работ, выполняемых конструктивных и архитектурных решений, реализуется в индивидуальном, частном порядке. И только лишь иногда, в процессе проектирования, используются те или иные элементы типовых проективных решений. Проектные работы по возведению здания из монолитного железобетона, обязаны в полной мере соответствовать выполнению всех действующих нормативных документов, регулирующих строительство (ГОСТов, СНиПов, СП и т.п.). Предоставленная проектная документация подлежит обязательному согласованию в специально действующих для этой цели инстанциях.

С данной позиции, доверять выполнение проекта зданий из монолитного железобетона, лучше всего, проектным компаниям какие имеют лицензию на выполнения данного вида работ и работники которых имеют достаточную квалификацию в проведении работ в данной области.

Данные о проектировании.

Прежде чем перейти к созданию проекта, заказчику необходимо предать в организацию занимающуюся проектированием заказ-заявку. А затем подготовить и передать комплект документов, установленного порядка, а именно:

1. Градостроительный план, территории будущего строительства;

2. Топографический план территории строительства и данные об инженерно-геологических структурах грунтов.

3. Сведения, затрагивающие характеристики и параметры будущего здания и прочее.

Перечень сведений и пожеланий заказчика достаточно для составления технического задания, на основании которого и выполняется проектирование монолитного здания или сооружения. Далее наши специалисты выполнят несколько эскизных вариантов проекта здания, после чего производится согласование, где выбирается наиболее подходящее решение и на его основе выполняется рабочая проектно-сметная документация для возведения монолитного железобетонного здания.

Состав проектной документации

На заключительной стадии создании проекта зданий из монолитного железобетона оформляется графическая часть здания и производится выдача комплекта чертежей. И предоставляется пояснительная записка, содержащая все необходимые данные для организации и производства строительства. Вот ориентировочный перечень проектно-сметной документации, созданной в ходе создания проекта здания из монолитного железобетона.

Графическая часть проекта:

1. Генеральный план строительства;

2. Архитектурно-строительные планы здания;

3. Планы местоположения монолитных конструкций;

4. Схемы, разрезы и планы армирования стен здания (для типового этажа и всех имеющихся уникальных этажей);

5. Схемы армирования перекрытий, монолитных лифтовых колодцев и прочих элементов здания.

Пояснительная записка:

1. Лист общих данных;

2. Архитектурные, конструктивные и объемно-планировочные решения;

3. Расчеты технических характеристик монолитного здания;

4. Описание технологического процесса строительства;

5. Спецификации материалов и оборудования;

6. Расчет финансовой части строительства.

 

 

Почему важно иметь качественную документацию перед началом строительства?

Очевидно, что правильно выполненное проектирование монолитных зданий самым непосредственным образом влияет на весь ход будущего строительства и последующую эксплуатацию готового объекта. И поэтому Залог успеха любой компании это люди, которые в ней работаю и новейшие технологии применяемые в процессе проектирования, а так же дружеская, творческая атмосфера способствует развитию каждого сотрудника и компании в целом.

У нас работает группа профессионалов, получивших глубокий практический опыт работы в современном проектировании. Глубокие знания, умноженные на колоссальный опыт, позволяют достичь высоких результатов. Только обратившись к этим составляющим успеха, можно стать первым в своем бизнесе. Квалификация специалистов нашей проектной организации позволяет решать самые сложные вопросы проектирования: от оценки инвестиционной привлекательности проекта до разработки моделей коммерческого использования объектов. Поэтому доверить проектирование надежней всего будет слаженному коллективу профессиональных и опытных проектировщиков, каковыми являются сотрудники нашей компании.

Мы с удовольствием разработаем проект по Вашей заявке. Контактная информация, необходимая для связи с нашей компанией, расположена на главной странице сайта.

mkbim.ru

Технологии строительства монолитных зданий: преимущества, этапы возведения

Одним из перспективных, современных направлений при возведении сооружений для различных нужд считают монолитное строительство – что это, когда и в каких случаях применяется, рассмотрим детальнее.

Процесс застройки предполагает формирование элементов конструкции из материалов, содержащих бетон, и опалубки для укладки смеси. Такая специальная форма – неотъемлемая часть будущей постройки, благодаря которой объект становится прочным, устойчивым к возможным изменениям различных свойств, деформациям.

Строительство монолитных домов: технология

Существует два вида возведения жилых зданий по этому методу:

  1. Первый предполагает наличие несъемной опалубки. Это наиболее экономный вариант – каркас для заливки бетонной смеси не убирают. Он делает стены более прочными, хорошо сохраняет тепло, благодаря чему использование отопления необязательно до момента, пока температура окружающей среды не станет ниже 0 градусов.

  2. Второй подразумевает демонтаж формовочной конструкции. В этом случае применяют армирование несущих элементов для их усиления. Опалубку делают из разных материалов: деревянных или металлических листов, заготовки из фанеры или пластика. Их создают индивидуально для каждого объекта, учитывая климатические условия региона, используемые материалы и другие характеристики. Фиксируют их специальными шпильками с гофрированным ободом для исключения контакта крепежа с заливаемой смесью.

Какая технология возведения зданий из монолитного бетона подходит для конкретного объекта определяют по результатам проводимых исследований:

  • инженерно-геологических;

  • гидрологических;

  • метеорологических;

  • геодезических и других.

Такой метод строительства позволяет выполнять конструкции различных форм, что осуществимо за счет подбора опалубки. Ее закладка определяется назначением, так как устройство отличается для разных категорий:

  • для перекрытий;

  • фундаментов;

  • стен;

  • туннелей;

  • с измененным радиусом.

При выборе учитывают характеристики материалов, которые применяются, и самой опалубки во избежание деформации самой формы и растрескивания элементов при дальнейшей эксплуатации постройки.

Материалы для монолитного строительства

При возведении сооружений по этой технологии вместо бетона используют и другие смеси. Выбирают менее теплопроводные стройматериалы, возводя здания из:

  • арболита;

  • газобетона;

  • керамзитобетона;

  • перлитобетона;

  • опилкобетона;

  • шлакобетона и других.

Они повышают теплосохранность, однако снижают прочность бетонированных стен.

Особенности возведения сооружений

Технология строительства проста, однако, обладает отличительными чертами.

  1. Работы начинают с устройства фундамента. От его качества и точных расчетов зависит надежность будущего дома.

  2. Монтируют предварительно подготовленные каркасы из армированных прутьев, устанавливают закладные элементы основания. Проводят укладку дренажных коммуникаций, гидроизоляции. При готовности опоры будущего объекта начинают сооружение этажей.

  3. При постройке вертикальных конструкций (стен, колонн) необходимо использование щитовой опалубки – основы монолитного строительства зданий. Для создания перекрытий проводят сбор опалубки для закладки армирования.

Грамотное проектирование положения формовочных элементов имеет ключевую роль для сооружения устойчивых и надежных построек. Поэтому перед началом работ производят на основании тщательных инженерно-геодезических, гидрологических, геологических и гидрометеорологических изысканий. Эти изыскательные работы можно проводить с помощью компьютерной программы Geonium, которая позволяет собирать все данные в сводные таблицы, подготавливать документы.

Возведение здания предполагает очередность выполнения действий:

  1. Предпроектные работы – это исследования почвы, территории, климатические особенности местности, а также планы заказчика.

  2. Проектирование. Все действия по созданию проекта удобнее всего совершать на программном обеспечении от ZWSOFT – платформы имеют много функций, позволяют работать с ними даже новичку.

  3. Расчистка и подготовка строительной площадки. Территорию рассчитывают исходя из габаритов постройки и участка для подвоза, складирования материалов.

  4. Каркасно-монолитная технология строительства малоэтажных домов требует монтажа арматуры. Это важный этап, на котором формируют возводимую постройку, закладывают дополнительную прочность стенам.

  5. Устанавливают опалубку – специальные щитовые конструкции из материалов, которые подходят к составу материала, из которого планируют сооружение дома.

  6. Заливают в подготовленные формы бетон. При проведении работ в холодное время года, смесь прогревают для его лучшего застывания. Летом этот процесс не требуется.

  7. Если предполагается строительство со съемной опалубкой, тогда по прошествии нескольких дней проводят ее демонтаж.

  8. Завершают работы внешней отделкой. Для этого редко применяют гидро- и теплоизоляцию, так как используемые материалы уже обладают этими характеристиками. Обычно на этой стадии проводят декоративную облицовку с использованием:

  • кирпича;

  • панелей;

  • штукатурки.

Монолитные строительные работы начинают только после проведения инженерных изысканий, проектирования и разработки документации. Для этого специалисты используют специализированное программное обеспечение, созданное для точного расчета данных и визуализации будущего объекта.

Популярный софт:

  1. RFEM.

  2. ZWCAD.

  3. RSTAD.

  4. AutoCAD.

  5. NanoCAD.

Это базовые программы, к которым применяют встраиваемые модули и приложения, предназначенные для различных нужд. К ним относятся:

  • СПДС;

  • VetCAD++;

  • СПДС Железобетон и другие.

Процесс бетонирования конструкций

Эти работы предполагают заливку смеси равномерно в опалубке, которую готовят предварительно. Для уплотнения материала применяют насосы высокой мощности, которое могут подавать материал на большую высоту, использующие вибрационные механизмы.

Технология строительства монолитных зданий и сооружений зимой имеет особенности:

  1. Для лучшего сцепления раствора, затвердевания в сроки, согласованные на этапе подготовки проектной документации, в него добавляют противоморозные примеси.

  2. Армирующие прутья оснащают специальными кабелями для согрева.

Проведение работ с реализацией этих действий возможно даже в сильные морозы – это упрощает возведение постройки такого типа.

Требования для монолитов

При проектировании зданий, выполняемых по такому принципу, учитывают результаты инженерно-геологических изысканий местности, материально-технические возможности и условия. Конструктивные элементы сооружений должны включать различные варианты объемно-планировочных задач, при этом приведенные затраты - минимизированы.

Для этого специалисты по возможности следуют возможным действиям:

  • берут во внимание методологические особенности постройки, влияющие на разработку объекта;

  • для взаимосвязи архитектурных, конструкторских и иных решений организацию работ и планирование проводят вместе с проектированием;

  • технология строительства монолитов предполагает использование промышленной опалубки и методологии, что позволяет уменьшить объемы по внешней отделке дома;

  • специалисты планируют объемы возведения здания таким образом, чтобы они обеспечивали нормальную амортизацию комплекса форм для заливки, а также его непрерывное использование;

  • выполнение работ максимально индустриализуют, благодаря автоматизированному процессу транспортировки, устройства, уплотнения бетона, использования заводской арматуры и механизации работ по облицовке;

  • сроки на строительство сокращают, обеспечивая максимальную выработку опалубки, используя условия окружающей среды – смесь затвердевает быстрее при смене плюсовых и минусовых температур.

Монолитно-каркасное строительство многоэтажных домов и малоэтажных должно проводиться согласно действующим нормативным актам с учетом его особенностей.

Требования к проектированию предполагают наличие:

  • данных о количестве зданий, способе их сооружения, имеющейся оснастке, конструкциях, комплектности оборудования;

  • указание о бетонных несущих конструкциях, технологических характеристик сборных изделий индивидуально или по сериям;

  • информации о привлечении строительных компаний, комбинатов по изготовлению деталей, сборных элементов;

  • данных об организации и транспортировке бетона или его изготовлении на стройплощадке;

  • указаний о надобности проведения исследований при проектировании и возведении объекта.

Работы начинают после согласования и утверждения плана с учетом требований нормативной документации, где подробно описано все о монолитном строительстве.

Возведение зданий по такой технологии основано на распределении нагрузки по железобетонным колоннам, металлическим перекрытиям на бетон, устойчивый к сильному давлению.

Этот принцип применяют на практике, чему способствует сооружение надежного и устойчивого армированного каркаса многоэтажных построек. Перегородки в таких строениях подобного типа не берут на себя особой тяжести.

От чего зависит качество сооружения

Грамотно спроектированные, ровные, хорошо отшлифованные конструкции, усиленный контроль за ведением работ на всех этапах строительства – залог крепкого, устойчивого и безопасного здания.

Для этого нужно:

  • проводить строгую проверку вязки арматурного каркаса;

  • определять точность укладки опалубки;

  • контролировать качество материалов – от момента его доставки на стройплощадку до его застывания в форме.

Все виды контроля и результаты заносят в отдельный журнал.

Преимущества монолитного строительства

Среди плюсов возведения объектов таким способом выделяют:

  • длительность срока эксплуатации – так как нет элементов, которые могут выйти из строя;

  • разные варианты планировки, дизайна внутреннего пространства, так как перегородки не имеют несущего значения, их можно устанавливать в произвольном порядке;

  • шумо- и теплоизоляционные свойства благодаря отсутствию внутри материала пустот и швов;

  • относительно низкая себестоимость – можно снизить цену, если делать опалубку из вторично переработанных стройматериалов, особенно если она съемная;

  • скорость строительства монолитного дома.

Несмотря на обилие достоинств, технология не лишена минусов.

по программам для проектирования

В ходе возведения зданий возможны определенные трудности:

  • при изменении погодных условий могут возникнуть вынужденные отсрочки по выполнению плана – наполнение опалубок смесью невозможно;

  • все строительные мероприятия должны проводиться на открытом месте, что иногда затрудняет работу специалистов и строительных бригад – нужно обеспечить правильный уход за материалами;

  • фасады довольно быстро теряют привлекательность и требуется их облицовка;

  • нужна принудительная вентиляция, так как стены не пропускают воздух, может появляться плесень.

Описанная технология позволяет создавать крепкие и надежные здания. Средний срок эксплуатации таких построек составляет около 150 лет. Он существенно увеличивается, если к делу привлечены профессионалы.

Программное обеспечение

Конструкторы, дизайнеры, инженеры – все, кто имеет отношение к проектированию, применяют трехмерное моделирование для визуализации объекта, внесения изменений в процессе возведения построек, создания административной и технической документации, составления отчетности.

Программы для создания мероприятий с помощью компьютерных технологий:

Технология возведения зданий из монолитного железобетона также является областью применения специализированного программного обеспечения.

Становятся все более известными и используемыми программные продукты ZWCAD, которые предлагает компания ZWSOFT. Они аналогичны с функциями ACAD от Autodesk, но стоят меньше, при этом обладают более выгодной системой лицензирования.

Рассмотрим некоторые из них:

  1. ZWCAD 2018 Professional – специализированный САПР реализации инженерных и строительных решений. Версии выпускаются с локальной и сетевой лицензиями. Кроме функций стандартной версии, софт включает 3D-моделирование, удобные интерфейс и возможности редактирования объектов, совместимость с основными (базовыми) приложениями. В ходе эксплуатации ZWCAD Pro, вы сможете разрабатывать новые дополнения для организации необходимых в вашей области работ. Нужно отметить опцию просмотра 3D модели в перспективе, возможность проведения рендеринга не только общей сцены, но и ее фрагментов.

  2. СПДС GraphiCS 10.х с локальной лицензией является встраиваемым дополнением для версий ZWCAD. Модуль отлично справляется с расчетом армирования монолита и автоматизирует разработку административных, рабочих документов в сфере строительства, основываясь на нормах, актах и требованиях действующего законодательства.

  3. Доступным для бюджета является набор утилит VetCAD++, он облегчит создание, оформление необходимых документов и чертежей. Приложение увеличивает функциональные возможности основных программ – ЗВКАД и ACAD.

Сделайте свою работу более интересной, выполняя сложные задачи, повышая уровень профессионализма!

или присоединяйтесь к нашей группе в соцсети

www.zwsoft.ru

Проектирование монолитных зданий

Скай-проект выполнит проектирование монолитных зданий – самых современных и совершенных конструкций зданий на сегодняшний день.

Наши предложения

Компания Sky-project разработает проектную документацию на монолитные здания:

  • На монолитные жилые здания (малоэтажные, высотные).
  • Общественные монолитные железобетонные здания.

Вы можете заказать нам не только железобетонные монолитные конструкции зданий, но другие сооружения, например: платформы, своды, тоннели, бункеры, малые архитектурные формы и пр.

Монолитные здания: понятие и преимущества

Строительство по монолитной технологии заключается в подаче бетонного раствора в съемную/несъемную опалубку с установленным армированием. В результате железобетонные монолитные конструкции зданий обладают высокой прочностью, с хорошими показателями по шумо и теплоизоляции.

Помимо этого монолитные железобетонные здания:

  • Не ограничивают заказчика и архитектора, позволяя любые криволинейные формы/конструкции.
  • Монолитные жилые здания оставляют покупателю квартиры выбор планировки.
  • Отличаются устойчивостью к динамическим нагрузкам, сейсмической устойчивостью.
  • Имеют меньший вес (ниже требования к фундаменту – экономия!).

Строители, возводя монолитные здания, могут готовить основную часть материала (бетон) на площадке, и резко снизить транспортные расходы.

Некоторые проекты

Монолитные железобетонные здания: особенности проектирования

Проектирование железобетонных зданий специалистами Скай-проект выполняется по общей схеме в два этапа, состав проектной документации на монолитные железобетонные здания также определяется ст.48 Градостроительного Кодекса.

В то же время технология монолитного строительства вносит свои требования. Проектирование железобетонных зданий, возводимых таким способом, отличается:

  • Расчетами и конструированием перекрытий. Монолитные железобетонные здания требуют проведения расчета предельного состояния перекрытий (первая и вторая группа), возникающих технологических нагрузок в ходе эксплуатации.
  • Проектирование монолитных зданий включает специальный расчет средних и опорных сечений при конструировании стен, особенности армирования, обработки мест соединения (стыков), использование перемычек и пр.
  • Определение усилий – на усадочные и температурные воздействия, деформационную устойчивость конструкции, ветровые нагрузки.
  • Выбор опалубки, производство стройматериалов. Проект на монолитные здания может включать разработку опалубки, содержит расчеты по бетонной смеси и арматуре. Расписывается технология производства бетона на месте или его транспортировка.

В итоге качественное проектирование монолитных зданий, несмотря на свою сложность, позволяет строить быстро и надежно, следуя современным направлениям в архитектуре.

skyproekt.ru

Строительство монолитных зданий: технология и основные этапы

Квалифицированные сотрудники СК Синмар займутся качественным строительством монолитных объектов, точно придерживаясь установленных государственных стандартов и нормативных требований. Накопленный опыт позволяет нам осуществить возведение сооружений из монолита под ключ в максимально короткие сроки с высоким уровнем качества монтажных работ.

Особенности строительства монолитных зданий 

Главный принцип монолитного возведения сооружений заключается в том, что бетонная смесь заливается в специально подготовленную опалубку, благодаря которой определяются ее дальнейшие формы. Применяемый в строительстве бетон способен придать зданию прочность, долговечность, а также высокую теплопроводность. Использование современных опалубочных систем позволяет значительно улучшить показатели надежности и скорость строительного процесса, а также получить ровную бетонную поверхность.

Одним из главных достоинств монолитного сооружения является то, что после возведения на нем нет швов или стыков между плитами. Правильно выбранные и примененные утеплители помогут сэкономить клиентам средства для оплаты коммунальных услуг.

Плюсы сооружений из монолита заключаются в следующем:

  • надежность;

  • огнестойкость;

  • универсальность;

  • экологичность;

  • сейсмоустойчивость;

  • бесшовность конструкции;

  • широкая вариативность отделочных работ;

  • хорошая стойкость к коррозии, окислению и агрессивной внешней среде;

  • длительный срок эксплуатации;

  • быстрота возведения конструкции.

Технологии строительства монолитных зданий 

На сегодняшний день в монолитной технологии возведения объектов применяют щитовую и туннельную опалубочные системы. Первая из них состоит их прочных щитов различных видов и форм с крепежом для их соединения, их которых образуются емкости для бетонной смеси, являющиеся основой для создания требуемых архитектурных конфигураций. Может применяться стеновая ползущая опалубочная система, стеновая для горизонтальной либо вертикальной поверхности и для монтажа закругленной конструкции.

При помощи данного вида опалубки можно возвести здание с любым типом фасада и количеством этажей. Туннельная опалубочная система представляет собой готовые формы, которые предполагают строительство объектов либо их частей, и не подлежат реконструкции. При использовании данной технологии стены и перекрытия заливаются бетонным раствором за один раз.

Такая опалубочная система изготавливается на заводе согласно разработанному проекту и доставляется к месту возведения здания в готовом к укладке бетонной смеси виде. С помощью таких опалубок можно получить целые блоки квартир, однако их площадь будет не более 60 кв.м. После окончания строительства сооружения остается только лишь возвести внешние стены конструкции.

Технологии строительства монолитных зданий бывают следующими:

  • Съемная опалубка. Она производится отдельно для всех проектов сооружений и точно повторяет его конфигурацию. Зачастую такие опалубки изготавливаются деревянными, а также с помощью фанеры или пластика. Размер незаполненного пространства между стенами опалубочной системы равен ширине строящейся стенки, которую рассчитывают, учитывая теплопроводность бетонного раствора. Скрепление щитовых конструкций опалубки осуществляется шайбами, шпильками и гайками. Для легкого снятия опалубочной системы на шпильки надевают гофрированные трубочки, защищая их от соприкосновения с раствором. Данная технология предусматривает возможность укладки не только бетона, но и других смесей, которые обладают меньшей теплопроводностью. Снятие опалубки выполняется после окончательного застывания раствора. Достоинство технологии заключается в том, что сооружение будет экологически чистым, но также необходимо будет осуществить разборку опалубочной системы.

  • Несъемная опалубка. Применение данного метода позволяет максимально снизить трудозатраты. Такая опалубочная система не демонтируется после укладки бетонной смеси. После установки основания на него монтируется опалубочная система, представляющая собой форму из пенополистирола, которая скреплена с помощью специальных профилей. Благодаря применению крепления «шип-паз» полностью исключается возможность утечки бетонного раствора. Системы из пенополистирола производятся с различной шириной в зависимости от параметров будущего сооружения. Такая технология отличается простотой монтажа, доступной стоимостью и отсутствием необходимости дополнительного утепления.

Вы желаете начать выгодный бизнес по возведению многоэтажных жилых комплексов? Тогда необходимо обратиться к опытным специалистам СК Синмар, которые произведут высокорентабельное строительство монолитных домов при полном соблюдении технологического процесса и актуального законодательства. Благодаря применению современной технологии возведения сооружений мы воплотим в реальность самые разнообразные архитектурные идеи заказчика. В проектной работе используем исключительно новейшее программное обеспечение позволяющее провести качественные и правильные расчеты, без допущения разных несостыковок.

Наши сотрудники применяют только специализированное строительное оборудование и современные стройматериалы, что дает возможность сэкономить расходы заказчика на 10-15%. Готовое сооружение не нуждается в предварительной подготовке к чистовым отделочным работам. Для дополнительного контроля за качеством монтажных работ мы осуществим эффективный технический надзор.

Этапы строительства монолитных зданий 

Перед непосредственным проведением монтажных работ сотрудники СК Синмар разработают рациональный проект, в котором будут определено количество требуемых стройматериалов и составлен перечень оборудования для возведения монолита. При проектировании мы создадим все необходимые условия для производства бетонного раствора прямо на строительном участке.

При данном виде возведения сооружений необходимо задействовать бетононасосы, которые осуществляют доставку бетонного раствора в подготовленные формы.

До начала монтажных работ наши сотрудники прокладывают все подземные коммуникации, устраивают средства механизации, устанавливают защитные навесы, ограждения, крытые проходы. Мы займемся прокладкой требуемых проездов и подъездных путей для автотранспорта и различной техники.

Рассмотрим следующие этапы строительства монолитных зданий:

  • Подготовка строительного участка и мест для складирования стройматериалов. Наши сотрудники оборудуют специальную зону для удобного замешивания бетонной смеси, которую будут заливать в опалубочную систему. Для экономии средств заказчика на транспортировке и хранении мы готовим бетон непосредственно на месте монтажа объекта.

  • Установка арматурного каркаса. Благодаря армированию повышается прочность бетона на растяжение. Применяемый каркас придаст необходимую конфигурацию возводящемуся сооружению и обеспечит ему максимальную надежность и долговечность. При вязке арматурного каркаса мы соблюдаем проектную толщину защитного слоя бетонной смеси и выдерживаем установленные межосевые расстояния между стержнями.

  • Устройство опалубочной системы. Монтируются специальные щиты, которые соприкасаются с бетонной конструкцией. При сборке опалубочной системы используем телескопические стойки и резьбовые муфты, позволяющие идеально выставить требуемую высоту. Мы не допускаем отклонений и щелей в опалубке, которые приведут к неровности готового монолитного сооружения.

  • Укладка бетонной смеси. От свойств применяемого бетона зависят эксплуатационные параметры всего объекта. Для качественного проведения данных работ перед укладкой смеси наши специалисты обязательно контролируют ее подвижность. Также мы осуществляем вибрирование раствора в процессе заливки его в опалубочную систему для полного удаления воздушных карманов.

  • Прогревание монолитной конструкции. Данные работы проводятся исключительно зимой, так как в случае примораживания бетона сооружение не наберет проектные прочностные показатели. Прогрев конструкции выполняется с помощью электродов, нагревательных проводов, термоэлектроматов.

  • Снятие опалубочной системы. В случае применения съемной опалубки ее необходимо демонтировать после затвердевания бетонной смеси и обретения требуемых форм. Для качественного застывания понадобится пара дней после заливки раствора.

  • Отделочные фасадные работы. На заключительной стадии декорируем стены конструкции с наружной стороны. Облицовочные работы поверхности стен выполняем при помощи декоративной штукатурки, панелей или кирпичей.

  • Ввод объекта в эксплуатацию.

Доверьте строительство монолитных сооружений профессионалам СК Синмар и мы сделаем здание надежным, современным, безопасным и энергоэффективным. Наши специалисты возведут объект, предлагая клиентам демократичную цену монтажа на каждой стадии работ, начиная от создания проекта и заканчивая обустройством прилегающей территории.

В случае возникновения дополнительных вопросов по строительству монолита закажите бесплатную консультацию менеджера, оставив на сайте данные о себе.

sksinmar.ru

Проектирование монолитных зданий в Москве

Монолитные здания с каждым годом становятся всё популярней в РФ и мире, так как обладают рядом преимуществ по сравнению с другими конструкциями:

  • Жёсткие сопряжения узлов каркаса обеспечивают повышенную прочность, долговечность и сейсмоустойчивость здания.
  • Разнообразие геометрических форм конструкции ограничена только фантазией архитектора и технологическими особенностями опалубки.
  • Все работы по возведению каркаса здания, проходящие на строительной площадке, существенно снижают транспортные и грузоподъёмные затраты.
  • Ввиду отсутствия пустот в теле монолитных железобетонных конструкций, здания имеют повышенную звукоизоляцию.

Группы капитальности зданий и сооружений

Проектирование монолитных зданий при правильном индивидуальном подходе – трудоёмкий кропотливый процесс, требующий от проектировщика теоретических знаний и значительного опыта работы, потому что, на сегодняшний день, не только показатели прочности и устойчивости диктуют разработкой качественного проекта, а также и экономический фактор – себестоимость конструкции.

Принцип проектирования монолитных конструкций основан на расчёте по двум группам предельных состояний – прочность и устойчивость сооружения (I группа) и деформации и ширина раскрытия трещин (II группа). Расчёт по первой группе проводится исходя из условий предельного равновесия сечения железобетонной конструкции, когда сочетания постоянных и временных нагрузок, приложенных к элементу, не превышают его расчётное сопротивление.

Для уверенности в прочности и устойчивости конструкции, а также исходя из возможных нарушений технологии при производстве работ и правил эксплуатации, вводятся коэффициенты надёжности, которые занижают фактическую сопротивляемость конструктивного элемента при внешних воздействиях.

Расчёт по второй группе предельных состояний служит для выполнения условия безопасной эксплуатации конструкции, так как, если не наступает хрупкое или усталостное разрушение, то деформация элемента выше нормируемой величины не позволяет комфортно пребывать в здании.

Этапы работы над проектной документацией

Проектирование зданий из монолитного железобетона производится следующими этапами:

1. Согласно архитектурным чертежам назначаются контуры железобетонных элементов здания – фундаменты, стены, пилоны и колонны, плиты перекрытий и покрытия, балки, капители, контрфорсы, консоли, а также прочие элементы, при необходимости – лестницы, шахты и т д.

2. Создаётся расчётная модель здания с участием всех назначенных элементов, в которой они преобразуются в пластины и стержни заданной жёсткости, связанные между собой жёсткими заделками.

3. К модели прикладываются все постоянные, временные и ветровые нагрузки.

4. Формируется модель грунтового основания согласно отчёту о геологии, которая интегрируется в конструкцию под фундамент, причём, сопряжение с моделью происходит с обеспечением двух степеней свободы для реальных показателей результатов расчёта.

5. Проводится статический расчёт каркаса, на основании которых проектировщик имеет возможность проверить образование пластических шарниров, предельных прогибов и прочих нарушений безопасной работы конструкции и, при их выявлении, внести исправления в модель, после чего произвести повторный расчёт.

6. На основании результатов расчёта, создаётся комплект графических материалов на каждый элемент конструкции с прорисовкой всех сложных мест и узлов сопряжения.

Реализованные проекты:

Технология и организация возведения монолитных зданий

Для обеспечения неразрывности работы монолитной железобетонной конструкции и правильной передачи усилий от элемента к элементу, что способствует равномерному их распределению в каркасе, необходимо обеспечить правильное конструирование всех узлов. Для монолитного сопряжения характерно неразрывность армирования всех элементов посредством выпусков арматуры из нижележащей конструкции на требуемую длину анкеровки в вышележащий элемент.

При проектировании монолитных железобетонных зданий важно обратить внимание на особенности остальных разделов проекта и учесть следующие нюансы при конструировании:

1. На основе архитектурных решений – исключить мостики холода путём устройства термовкладышей в перекрытия и стены в местах расположения одной конструкции как в тёплой, так и в холодной зонах, заложить дополнительную гидроизоляцию стен и пола подвала в случае наличия эксплуатируемых помещений и т. д.

2. На основе решений ОВ и ВК – заложить проёмы для прохождения коммуникаций требуемых сечений и диаметров, обеспечить сливные канавки и приямки для сбора воды, ниши для расположения пожарных кранов и тепловых шкафов и т. д.

3. На основе решений ЭОМ – при необходимости, обеспечить прохождение закладных трубок с протяжками в теле конструктивных элементов, зафиксировать расположение подрозетников, распаечных коробок, ниш под электрические щиты и прочих электроустановочных изделий.

4. На основе технологических решений – обеспечить особые требования к конструкциям (например, конструкции стен помещений касс часто выполняются из бетона с металлической стружкой для взломостойкости).

Все вышеприведённые и другие особенности проектирования монолитных зданий в обязательном порядке учитываются нашими высококвалифицированными специалистами, а многостадийная проверка обеспечивает оптимальный результат.

Вы можете доверить проектирование монолитных зданий нашим специалистам и заказать проект на сайте https://iconstr.ru оставив заявку ниже или получить консультацию по любому интересующему вас вопросу позвонив по номеру +7(495) 532-56-55.

iconstr.ru

СП 52-103-2007 «Железобетонные монолитные конструкции зданий»

Система нормативных документов в строительстве

СВОД ПРАВИЛ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ

2007

Предисловие

1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (НИИЖБ) - филиалом ФГУП «НИЦ «Строительство»

2 РЕКОМЕНДОВАН К УТВЕРЖДЕНИЮ И ПРИМЕНЕНИЮ конструкторской секцией НТС НИИЖБ 27 апреля 2006 г.

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ приказом и.о. генерального директора ФГУП «НИЦ «Строительство» от 12 июля 2007 г. № 123.

4 ВВЕДЕН впервые

Содержание

Введение

Настоящий Свод правил разработан в развитие СНиП 52-01-2003 «Бетонные и железобетонные конструкции. Основные положения».

Объем строительства зданий различного назначения из монолитного железобетона в последние годы значительно возрос. В то же время практика проектирования не имеет в своем распоряжении документа, где были бы объединены основные требования, выполнение которых обеспечивает надежность и безопасность такого вида зданий. Настоящий Свод правил ставит своей целью восполнить этот пробел.

Свод правил содержит рекомендации по расчету и проектированию железобетонных монолитных конструкций зданий жилого и гражданского назначения из тяжелого бетона без предварительного напряжения арматуры.

Решение вопроса о применении данного Свода правил при проектировании монолитных зданий относится к компетенции заказчика или проектной организации. В случае принятия решения о применении настоящего Свода правил должны быть выполнены все установленные в нем требования.

Свод правил разработали д-ра техн. наук А. С. Залесов, А.С. Семченков, Е.А. Чистяков, С.Б. Крылов, канд. техн. наук Р.Ш. Шарипов (НИИЖБ - филиал ФГУП «НИЦ «Строительство»).

СП 52-103-2007

СВОД ПРАВИЛ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ

ЖЕЛЕЗОБЕТОННЫЕ МОНОЛИТНЫЕ КОНСТРУКЦИИ ЗДАНИЙ

CONCRETE MONOLITHIC BUILDING STRUCTURES

Дата введения 2007-07-15

1 Область применения

Настоящий Свод правил (далее - СП) распространяется на проектирование железобетонных монолитных конструкций зданий жилого и гражданского назначения из тяжелого бетона без предварительного напряжения арматуры.

2 Нормативные ссылки

В настоящем Своде правил использованы ссылки на следующие основные нормативные документы:

СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения

СП 52-101-2003 Бетонные и железобетонные конструкции без предварительного напряжения арматуры

СП 52-104-2004 Сталефибробетонные конструкции.

Другие нормативные и рекомендательные документы, ссылки на которые использованы в настоящем СП, приведены в приложении Б.

3 Термины и определения

В настоящем Своде правил использованы основные термины и определения по СНиП 52-01, СП 52-101, СП 52-104 и другим нормативным документам.

4 Общие указания

4.1 Рекомендации настоящего Свода правил распространяются на проектирование различных конструктивных систем зданий, в которых все основные несущие конструкции (колонны, стены, перекрытия, покрытия, фундаменты) выполняются из монолитного железобетона с жесткими и податливыми сопряжениями между ними.

4.2 Проектирование конструкций зданий, подвергающихся климатическим температурно-влажностным воздействиям, следует выполнять по СНиП 2.01.07.

4.3 Расчет и конструирование зданий при сейсмических воздействиях следует выполнять согласно СниП II-7. Огнестойкость конструкций и огнесохранность зданий должны отвечать требованиям СНиП 21-01 и СТО 36554501-006.

4.4 Несущие конструкции здания следует проектировать с учетом долговечности и ремонтопригодности согласно СНиП 31-01, защиту конструкций от коррозии следует выполнять согласно указаний СНиП 2.03.11.

4.5 Значения предельных деформаций основания зданий регламентируются СНиП 2.02.01. Предельные прогибы, перемещения конструкций и перекосы вертикальных и горизонтальных ячеек зданий не должны превышать допустимых значений, приведенных в СНиП 2.01.07.

4.6 Для зданий, рассчитываемых на совместное воздействие вертикальных и горизонтальных нагрузок по недеформированной схеме, прогиб верха здания с учетом податливости основания рекомендуется принимать не более 0,001 высоты здания. При больших значениях прогибов необходимо выполнить расчет по деформированной схеме. При этом значение прогиба здания не должно превышать 0,002 его высоты.

4.7 Настоящий Свод правил следует применять совместно с СП 52-101 и СП 52-104.

4.8 Железобетонные конструкции должны быть сконструированы таким образом, чтобы с достаточной надежностью предотвратить возникновение всех видов предельных состояний. Это достигается выбором показателей качества материалов, назначением размеров и конструированием согласно рекомендациям настоящего СП и действующих нормативных документов. При этом должны быть выполнены технологические требования при изготовлении конструкций, соблюдены требования по эксплуатации зданий, а также требования по экологии, энергосбережению, противопожарной безопасности и долговечности, устанавливаемые соответствующими нормативными документами, и учтены неравномерные осадки основания.

4.9 При проектировании железобетонных конструкций их надежность должна быть установлена расчетом по предельным состояниям первой и второй групп путем использования расчетных значений нагрузок, характеристик материалов, определяемых с помощью соответствующих частных коэффициентов надежности по нормативным значениям этих характеристик с учетом степени ответственности зданий.

Нормативные значения нагрузок, коэффициентов сочетаний нагрузок и коэффициентов надежности ответственности конструкций, а также разделение нагрузок на постоянные и временные (длительные и кратковременные) следует принимать согласно СНиП 2.01.07.

Порядок приложения постоянных и длительно действующих нагрузок должен определяться графиком производства работ или по факту.

4.10 Наряду с контролем прочности бетона по образцам рекомендуется контроль прочности бетона в готовой конструкции проводить с использованием неразрушающих методов по ГОСТ 22690.

4.11 При применении арматуры класса А500С с эффективным профилем, разработанным в НИИЖБ, следует пользоваться рекомендациями СТО 36554501-005. Стыковку арматуры в торец на стройплощадке следует осуществлять с помощью ванной сварки, а также винтовых и опресованных механических соединений.

Рекомендуется применение арматуры малого диаметра расширенного сортамента: 5,5; 6; 6,5; 7; 8; 9; 10; 11; 12 мм нового периодического профиля с сердечником в форме квадрата со скругленными углами в соответствии с ТУ 14-1-5500, ТУ 14-1-5501.

5 Конструктивные решения железобетонных монолитных зданий

5.1 Конструктивное решение включает строительную и конструктивную системы, а также конструктивную схему.

5.2 Строительная система здания определяется материалом, наиболее массовой конструкцией и технологией возведения несущих элементов (монолитный железобетон).

5.3 Конструктивная система (далее - КС) здания представляет собой совокупность взаимосвязанных несущих конструктивных элементов, обеспечивающих его прочность, устойчивость и необходимый уровень эксплуатационных качеств.

5.4 Несущая КС монолитного железобетонного здания состоит из фундамента, опирающихся на него вертикальных несущих элементов (колонн и стен) и объединяющих их в единую пространственную систему горизонтальных элементов (плит перекрытий и покрытия).

5.5 В зависимости от типа вертикальных несущих элементов (колонны и стены) конструктивные системы разделяют на (рис. 5.1, а, б, в):

- колонные, где основным несущим вертикальным элементом являются колонны;

- стеновые, где основным несущим элементом являются стены;

- колонно-стеновые, или смешанные, где вертикальными несущими элементами являются колонны и стены.

а - колонная КС; б - стеновая КС; в - смешанная КС;

1 - плита перекрытия; 2 - колонны; 3 - стены

Рисунок 5.1 - Фрагменты планов зданий

Нижние этажи часто решают в одной конструктивной системе, а верхние - в другой. Конструктивная система таких зданий является комбинированной.

5.6 В зависимости от инженерно-геологических условий, нагрузок и проектного задания фундаменты выполняют в виде отдельных плит переменной толщины под колонны (рис. 5.2, а), ленточных плит под колонны и стену (рис. 5.2, б) и общей фундаментной плиты по всей площади конструктивной системы (рис. 5.2, в). При большой толщине плит применяют более экономичные, чем сплошные, ребристые и коробчатые плиты (рис. 5.2, г, д). При слабых грунтах устраивают свайные фундаменты.

а - отдельный; б - ленточный; в, г, д - плитные: сплошной, ребристый и коробчатый

Рисунок 5.2 - Фундаменты

5.7 Колонны могут иметь поперечное сечение квадратное, прямоугольное, круглое, кольцевое, уголковое, тавровое и крестовое (рис. 5.3, а-ж).

а - квадратное; б - круглое; в - кольцевое; г - прямоугольное; д - уголковое; е - тавровое; ж - крестовое

Рисунок 5.3 - Поперечные сечения колонн

Прямоугольные колонны (пилоны) с вытянутым поперечным сечением имеют соотношения b/а4. Более вытянутые в плане колонны следует относить к стенам.

5.8 Несущие стены в плане могут быть отдельно стоящими (рис. 5.1, в); продольными и поперечными; перекрестными (рис. 5.1, б), образующими вертикальные тонкостенные стержни открытого и замкнутого сечений.

5.9 Плиты перекрытий в колонных КС бывают:

- безбалочные в виде гладкой плиты (рис. 5.4, а); плиты с капителями (рис. 5.4, б); плиты гладкие или с капителями и с контурными балками по периметру здания;

- с межколонными балками в одном (рис. 5.5, а, б) и в двух направлениях (рис. 5.5, в, г).

5.10 Плиты перекрытий в колонных КС с балками и в стеновых КС бывают:

- сплошные, пустотные и ребристые, если балки и стены водном направлении (рис. 5.5, а, б);

- сплошные, кессонные пустотные и ребристые, если балки и стены в двух направлениях (рис. 5.5, в г);

- ребристые с ребрами вверх для устройства плавающего пола и получения гладкого потолка, укладки звукоизоляции и инженерных коммуникаций (рис. 5.5, а).

а - гладкая плита; 6 - плита с капителями

Рисунок 5.4 - Безбалочные перекрытия

а, б - балки и стены в одном направлении; в, г - балки и стены в двух направлениях;

1 - колонны; 2 - балки или стены; 3 - плита сплошная или пустотная; 4 - плита сплошная или пустотная кессонная;

5 и 6 - ребра и полки ребристой и кессонной плит

Рисунок 5.5. - Плиты перекрытий в колонных КС с балками и в стеновых КС

5.11 Ограждающие наружные стены бывают:

- несущие, передающие временную и постоянную нагрузки с этажей и собственный вес стены непосредственно на фундамент;

- самонесущие, передающие непосредственно на фундамент только собственный вес стены;

- ненесущие, опирающиеся в пределах этажа на перекрытия или вертикальные несущие элементы КС и непосредственно не передающие нагрузку на фундамент.

5.12 Конструктивные схемы в стеновых КС определяются взаимным расположением стен, а в колонных КС - взаимным расположением межколонных балок (рис. 5.5) относительно поперечных и продольных осей здания. Схемы бывают поперечные, продольные и перекрестные. В реальных монолитных зданиях конструктивные схемы обычно перекрестные (рис. 5.5, в, г; 6.2, а). Чисто поперечные и продольные схемы (рис. 6.1, б, в) рассматриваются при разделении пространственной КС на две независимые (рис. 6.1, б, в и 6.2, б, в) с целью упрощения расчетов.

(Опечатка, Информационный бюллетень о нормативной, методической и типовой проектной документации, № 3 2008 г.)

5.13 Горизонтальные нагрузки перераспределяются дисками перекрытий между защемленными в фундаменте вертикальными опорными консольными конструкциями (устоями) в виде:

- пространственных рам в колонных КС;

- стен в двух направлениях и образуемых стенами тонкостенных стержней открытого и замкнутого профилей в стеновых КС;

- пространственных рам, стен и тонкостенных стержней в смешанных КС.

Устои в КС воспринимают все горизонтальные и вертикальные нагрузки.

5.14 В колонных КС стыки пространственных рам-этажерок считаются жесткими при наличии капителей в плитах или вутов в главных балках. Стыки колонн с гладкой плитой или балками являются условно жесткими. После образования в стыках колонн наклонных трещин, их податливость еще более возрастает. Податливость стыков учитывают введением коэффициентов, понижающих изгибную жесткость элементов.

5.15 В многоэтажных зданиях наиболее часто применяют смешанные колонно-стеновые КС.

Стеновые, особенно перекрестные, КС обладают большей жесткостью и большим сопротивлением горизонтальным и вертикальным нагрузкам и потому более подходят для высоких зданий.

5.16 Несущие конструктивные системы могут быть регулярными, с одинаковым шагом колонн и стен по длине, ширине и высоте здания, или нерегулярными в плане и по высоте здания.

5.17 Нерегулярную несущую конструктивную систему рекомендуется проектировать таким образом, чтобы центр жесткости и центр масс конструктивной системы были как можно ближе к месту расположения равнодействующей вертикальной нагрузки.

5.18 Несущую конструктивную систему рекомендуется проектировать таким образом, чтобы вертикальные несущие элементы (колонны, стены) располагались от фундамента один над другим по высоте здания, т.е. были соосными. В тех случаях, когда колонны и стены не выполняются по одной оси, под «висячими» колоннами и стенами следует предусматривать устройство ребер жесткости и балок-стенок.

5.19 Конструктивную систему зданий рекомендуется разделять осадочными швами при различной высоте здания, а также в зависимости от длины здания - температурно-усадочными швами. Требуемые расстояния между температурно-усадочными швами по длине здания следует устанавливать расчетом. На период строительства возможно устройство временных деформационных швов, которые потом ликвидируются.

5.20 При проектировании несущих конструктивных систем следует стремиться к простым техническим решениям, в наибольшей степени обеспечивающим прочность и жесткость конструктивной системы: симметричным в плане и одинаковым по высоте, с регулярным расположением вертикальных несущих элементов в плане и по высоте, без больших консолей и проемов в плане и по высоте здания и т.п.

5.21 Отдельностоящие высокие здания рекомендуется выполнять ширококорпусными: круглыми, овальными, квадратными или прямоугольными с небольшим соотношением длинной и короткой сторон для снижения ветрового давления и затрат на отопление.

5.22 Секции здания разной высоты должны быть разделены деформационными швами. Не рекомендуется устраивать подземный гараж и стилобат, выступающие за пределы площади высокой части здания.

6 Расчет несущих конструктивных систем

6.1.1 Расчетная схема здания включает данные о нагрузках и физическую модель.

6.1.2 Физическая модель здания представляет собой трехмерную систему из колонн, стен, плит, балок и их сопряжений, а также данные о физико-механических свойствах материалов.

6.1.3 Распределение усилий в пространственно-деформируемых системах в значительной степени определяется жесткостными характеристиками элементов и их сопряжениями, которые зависят как от материала и его напряженного состояния, так и от качества изготовления и монтажа, наличия дефектов, предыстории загружения, типа конструкции, влажности материала, степени повреждения (износа), температуры и других факторов. Влияние этих факторов при проектировании учесть сложно. Поэтому геометрические параметры и физические характеристики материалов и конструкций в расчетах принимаются заданными.

6.1.4 Расчеты напряженно-деформированного состояния железобетонных линейных, плоских и объемных элементов и их сопряжений разработаны только для нормальных сечений при простых воздействиях.

Расчеты по наклонным и пространственным сечениям с трещинами имеются лишь для частных случаев, а для сложных воздействий и учета многих факторов (см. п. 6.1.3) применяют различные упрощения.

6.1.5 Сложные пространственные геометрические схемы упрощают путем замены реальной конструкции условной схемой. Ребристый и пустотный диски перекрытий, так же как и структурное покрытие из стержней, заменяются условной анизотропной пластиной постоянной толщины. Колонны и балки аппроксимируются стержнями, приведенными к оси, а плиты и стены - пластинами, приведенными к срединной плоскости.

6.1.6 Применяют континуальные, дискретно-континуальные и дискретные расчетные модели. Наиболее широкое распространение получили дискретные расчетные модели, основанные на математической и геометрической дискретизации пространственных конструкций, рассчитываемых методом конечных элементов (МКЭ).

6.2 Требования к расчету

6.2.1 Расчет несущих конструктивных систем включает:

- определение усилий в элементах конструктивной системы (колоннах, плитах перекрытий и покрытия, фундаментных плитах, стенах, ядрах) и усилий, действующих на основания фундаментов;

- определение перемещений конструктивной системы в целом и отдельных ее элементов, а также ускорений колебания перекрытий верхних этажей;

- расчет на устойчивость конструктивной системы (устойчивость формы и положения);

- оценку сопротивляемости конструктивной системы прогрессирующему разрушению;

- оценку несущей способности и деформации основания.

6.2.2 Расчет несущей конструктивной системы, включающей надземные и подземные конструкции и фундамент, следует производить для всех последовательных стадий возведения (в случае существенного изменения расчетной ситуации) и для стадии эксплуатации, принимая расчетные схемы, отвечающие рассматриваемым стадиям. При этом следует учитывать:

- порядок приложения и изменения вертикальной нагрузки и жесткостей элементов в процессе монтажа и эксплуатации;

- образование трещин от температурно-усадочных деформаций бетона в процессе твердения и наличие технологических швов при бетонировании захватками;

- величину прочности и жесткости бетона в момент освобождения конструкции от опалубки и передачи нагрузки от вышележащих этажей.

6.2.3 Расчет несущей конструктивной системы в общем случае следует производить в пространственной постановке с учетом совместной работы надземных и подземных конструкций, фундамента и основания под ним.

6.2.4 Расчет несущих конструктивных систем производят с использованием линейных и нелинейных жесткостей железобетонных элементов.

Линейные жесткости железобетонных элементов определяют как для сплошного упругого тела.

Нелинейные жесткости железобетонных элементов определяют по поперечному сечению с учетом возможного образования трещин, а также с учетом развития неупругих деформаций в бетоне и арматуре, отвечающих кратковременному и длительному действиям нагрузки.

6.2.5 Значения нелинейных жесткостей железобетонных элементов следует устанавливать в зависимости от стадии расчета, требований к расчету и характера напряженно-деформированного состояния элемента.

На первой стадии расчета конструктивной системы, характеризуемой тем, что армирование железобетонных элементов неизвестно, нелинейную работу элементов рекомендуется учитывать путем понижения их жесткостей с помощью условных обобщенных коэффициентов.

На последующих стадиях расчета конструктивной системы, когда известно армирование железобетонных элементов, в расчет следует вводить уточненные значения жесткостей элементов, определяемые с учетом армирования, образования трещин и развития неупругих деформаций в бетоне и арматуре согласно указаниям действующих нормативных документов по проектированию железобетонных конструкций.

6.2.6 В результате расчета несущей конструктивной системы должны быть установлены: в колоннах - значения продольных и поперечных сил, изгибающих моментов, а в необходимых случаях - и крутящих моментов; в плоских плитах перекрытий, покрытия и фундаментов - значения изгибающих и крутящих моментов, поперечных и продольных сил; в стенах - значения нормальных и сдвигающих продольных сил, изгибающих и крутящих моментов и поперечных сил.

Определение усилий в элементах конструктивной системы следует производить от действия расчетных постоянных, длительных и кратковременных нагрузок, особых нагрузок, а также их расчетных сочетаний.

На первой стадии расчета для оценки усилий в элементах конструктивной системы допускается принимать приближенные значения жесткостей элементов, имея в виду, что распределение усилий в элементах конструктивных систем зависит не от величины, а, в основном, от соотношения жесткостей этих элементов. Для более точной оценки распределения усилий в элементах конструктивной системы рекомендуется принимать уточненные значения жесткостей с понижающими коэффициентами. При этом необходимо учитывать существенное снижение жесткостей в изгибаемых плитных элементах (в результате возможного образования трещин) по сравнению с внецентренно сжатыми элементами. В первом приближении рекомендуется принимать модуль упругости материала равным Ев с понижающими коэффициентами: 0,6 - для вертикальных сжатых элементов; 0,3 - для плит перекрытий (покрытий) с учетом длительности действия нагрузки.

На последующих стадиях расчета жесткости следует определять согласно п. 6.2.5.

6.2.7 В результате расчета несущей конструктивной системы должны быть установлены значения вертикальных перемещений (прогибов) перекрытий и покрытий, горизонтальные перемещения конструктивной системы, а также для зданий повышенной этажности - ускорения колебаний перекрытий верхних этажей. Величины указанных перемещений и ускорения колебаний не должны превышать допустимых значений, установленных соответствующими нормативными документами.

Определение горизонтальных перемещений конструктивной системы следует производить от действия расчетных (для предельных состояний второй группы*) постоянных, длительных и кратковременных горизонтальных и вертикальных нагрузок. При этом на первой стадии расчета рекомендуется принимать пониженные значения жесткостей элементов конструктивной системы, поскольку горизонтальные перемещения напрямую зависят от жесткостных свойств элементов.

_______________________

* Далее по тексту расчетные значения нагрузки и характеристик материалов, используемые для расчета по предельным состояниям второй группы, в тех случаях, когда коэффициенты надежности равны единице, названы «нормативными».

Определение вертикальных перемещений (прогибов) перекрытий и покрытий производят от действия нормативных постоянных и длительных вертикальных нагрузок. При этом на первой стадии расчета рекомендуется принимать пониженные значения жесткостей элементов конструктивной системы, в частности плит перекрытий, поскольку вертикальные перемещения (прогибы) напрямую зависят от деформационных свойств плит.

В первом приближении значения понижающих коэффициентов относительно начального модуля упругости бетона с учетом длительности действия нагрузки рекомендуется принимать: для вертикальных несущих элементов - 0,6, а для плит перекрытий (покрытий) - 0,2 при наличии трещин или 0,3 - при отсутствии трещин.

На последующих стадиях расчета при известном армировании следует принимать уточненные жесткости плит с учетом армирования, наличия трещин и неупругих деформаций в бетоне и арматуре, определяемые согласно действующим нормативным документам.

Ускорения колебаний перекрытий верхних этажей здания следует определять при действии пульсационной составляющей ветровой нагрузки.

6.2.8 При расчете на устойчивость конструктивной системы следует производить проверку устойчивости формы конструктивной системы, а также устойчивости положения конструктивной системы на опрокидывание и на сдвиг.

Расчет на устойчивость конструктивной системы следует производить на действие расчетных постоянных, длительных и кратковременных вертикальных и горизонтальных нагрузок.

При расчете устойчивости формы конструктивной системы рекомендуется принимать пониженные жесткости элементов конструктивной системы (учитывая нелинейную работу материала), поскольку устойчивость конструктивной системы связана с деформативностью системы и отдельных элементов. При этом значение понижающих коэффициентов в первом приближении рекомендуется принимать, как указано в пп. 6.2.6, 6.2.7 с учетом того, что устойчивость конструктивной системы зависит от сопротивления в основном внецентренно сжатых вертикальных элементов при длительном действии нагрузки и в стадии, приближающейся к предельной. Запас по устойчивости должен быть не менее чем двукратным.

При расчете устойчивости положения конструктивные системы следует рассматривать как жесткое недеформированное тело. При расчете на опрокидывание удерживающий момент от вертикальной нагрузки должен превышать опрокидывающий момент от горизонтальной нагрузки с коэффициентом 1,5. При расчете на сдвиг удерживающая горизонтальная сила должна превышать действующую сдвигающую силу с коэффициентом 1,2. При этом следует учитывать наиболее неблагоприятные значения коэффициентов надежности по нагрузке.

6.2.9 Расчет на прогрессирующее разрушение должен обеспечивать прочность и устойчивость конструктивной системы в целом при выходе из строя одного какого-либо элемента конструктивной системы (колонны, участка стены, участка перекрытия) и возможном последующем разрушении близлежащих элементов. Кроме того, в обоснованных случаях рассматривается расчетная ситуация с выходом из строя части основания под фундаментами (например, в случае образования карстовых провалов).

Расчет на прогрессирующее разрушение следует производить при действии нормативных вертикальных нагрузок с нормативными значениями сопротивления бетона и арматуры, принимая линейные жесткости элементов конструктивной системы.

6.2.10 Оценку несущей способности и деформации основания следует производить согласно соответствующим нормативным документам по усилиям, действующим на основание, найденным при расчете конструктивной системы здания.

6.2.11 Расчет перекосов вертикальных ячеек от неравномерных вертикальных деформаций соседних несущих конструкций (стен и колонн) следует производить с учетом фактического порядка возведения здания, а также времени и длительности приложения нагрузок для учета нелинейных деформаций в железобетонных конструкциях.

6.3 Методы расчета

6.3.1 Пространственная конструктивная система является статически неопределимой системой. Для расчета несущих конструктивных систем рекомендуется использовать дискретные расчетные модели, рассчитываемые методом конечных элементов.

Расчет регулярных (или близких к ним) колонных и стеновых КС можно производить методом заменяющих (эквивалентных) рам (рис. 6.1), а стеновых КС - путем разложения на поперечную и продольную схемы (рис. 6.2).

Для оценки максимальной несущей способности перекрытий может быть использован расчет методом предельного равновесия.

а - общая схема; 6 - поперечная схема; в - продольная схема;

1, 4 и 2, 3 - две крайние и две средние поперечные рамы; 5, 7 и 6 - две крайние и средняя продольные рамы; l1, l2, l3 - шаги поперечных рам; b1, b2 - шаги продольных рам

Рисунок 6.1 - План типового этажа здания с регулярной колонной КС

а - общая схема; б - поперечная схема; в - продольная схема;

1, 2 - наружные и внутренние поперечные стены; 3, 4 - наружные и внутренние продольные стены; 5 - участки примыкающих стен перпендикулярного направления

Рисунок 6.2 - К расчету стеновой конструктивной системы

6.3.2 Дискретизацию конструктивных систем производят с применением оболочечных, стержневых и объемных (если это необходимо) конечных элементов, используемых в принятой расчетной программе.

При создании пространственной модели конструктивной системы необходимо учитывать характер совместной работы стержневых, оболочечных и объемных конечных элементов, связанный с различным количеством степеней свободы для каждого из указанных элементов.

6.3.3 Деформативные свойства основания следует учитывать путем использования общепринятых расчетных моделей основания, применения различных типов конечных элементов или краевых условий с заданной податливостью, моделирования всего массива грунта под зданием из объемных конечных элементов, либо комплексно - с использованием всех вышеперечисленных методов в случае сложной совместной работы конструкции фундамента и основания.

На первой стадии расчета конструктивной системы допускается деформативность основания учитывать с помощью коэффициента постели, принимаемого по усредненным характеристикам грунтов.

При использовании свайных или свайно-плитных фундаментов сваи следует моделировать как железобетонные конструкции или учитывать их совместную работу с грунтом обобщенно, как единое основание с использованием приведенного коэффициента постели основания.

6.3.4 При отсутствии данных о порядке и времени приложения постоянных и длительно действующих нагрузок допускается проверять прочность, трещиностойкость и деформации несущей КС с обязательным учетом деформативности основания при двух крайних случаях:

1) наиболее опасном поэтажном приложении нагрузки и изменении жесткостей в процессе монтажа;

2) одновременном приложении всей нагрузки на всех этажах.

6.3.5 При построении конечно-элементной расчетной модели размеры и конфигурацию конечных элементов следует задавать, исходя из возможностей применяемых конкретных расчетных программ, и принимать такими, чтобы была обеспечена необходимая точность определения усилий подлине колонн и по площади плит перекрытий, фундаментов и стен с учетом общего числа конечных элементов в расчетной схеме, влияющего на продолжительность расчета.

6.3.6 Жесткости конечных элементов на первоначальной стадии расчета конструктивной системы, когда армирование конструкций еще не известно, следует определять с учетом рекомендаций разд. 6.2.

После определения арматуры в плитах перекрытий и покрытий следует произвести дополнительный расчет конструктивной системы для уточнения прогибов этих конструкций, принимая уточненные значения изгибных жесткостей конечных элементов плит с учетом армирования в двух направлениях согласно действующим нормативным документам.

Аналогичный дополнительный расчет следует выполнить для более точной оценки изгибающих моментов в элементах перекрытий, покрытий и фундаментных плитах, а также продольных сил в стенах и колоннах с учетом нелинейной работы арматуры и бетона вплоть до предельных значений.

6.3.7 Расчет конструктивных систем методом конечных элементов следует производить с использованием специальных сертифицированных в России компьютерных программ, согласованных с НИИЖБ: Лира, Мономах, STARK-ES и других.

6.3.8 Расчет регулярной колонной конструктивной системы методом заменяющих (эквивалентных) рам производят путем выделения отдельных рам вертикальными сечениями, проходящими по середине шага колонн, в двух взаимно перпендикулярных направлениях (рис. 6.1).

Расчет выделенных в каждом направлении рам, состоящих из колонн и полос плоской плиты (условного ригеля), следует производить независимо друг от друга по общим правилам строительной механики на действие вертикальных и горизонтальных нагрузок, принимая при определении усилий линейные жесткости элементов рам.

Изгибающие моменты и поперечные силы в опорных и пролетных сечениях условного ригеля распределяют между его надколонными и межколонными полосами в зависимости от расположения колонн в раме (крайняя или промежуточная колонна) и соотношения между поперечными и продольными (вдоль оси рамы) пролетами.

Расчет конструктивных систем методом заменяющих рам следует производить по специальным рекомендациям, согласованным с НИИЖБ.

6.3.9 Расчет стеновой КС (рис. 6.2, а) на горизонтальные нагрузки можно выполнять методом разделения перекрестной КС на независимые поперечную (рис. 6.2, б) и продольную схемы (рис. 6.2, в).

Горизонтальные нагрузки принимают действующими в обоих направлениях. При допущении абсолютной жесткости плит перекрытий в своей плоскости горизонтальные перемещения и углы наклона всех несущих стен будут одинаковыми при симметричных в плане схемах и нагрузках. Поэтому можно принять все стены одного направления, расположенные в одной плоскости, соединенными последовательно друг с другом в уровне перекрытий шарнирными связями, абсолютно жесткими вдоль своей оси. При несущих монолитных наружных стенах следует учитывать участки примыкающих стен перпендикулярного направления (рис. 6.2, б, в).

6.3.10 Расчет несущей способности перекрытий методом предельного равновесия следует производить, принимая в качестве критерия равенство работ внешних нагрузок и внутренних сил на возможных перемещениях в предельном равновесии плиты перекрытия с наиболее опасной схемой излома, характеризующей ее разрушение.

6.3.11 На начальной стадии расчета для ориентировочной оценки жесткости принятой конструктивной системы зданий повышенной этажности (п. 5.12) допускается выполнить расчет системы на устойчивость и горизонтальные перемещения по условной стержневой консольной схеме, включающей только стены и колонны (с линейными деформационными характеристиками), жестко заделанные в основании и объединенные шарнирно примыкающими к ним жесткими дисками перекрытий.

7 Несущие железобетонные конструкции

7.1 Основными несущими элементами (рис. 5.1-5.5) конструктивной системы являются колонны, стены, плиты перекрытий и покрытий, различные фундаменты, в том числе свайные ростверки и т.п. (см. пп. 5.6-5.11).

7.2 Основными конструктивными параметрами колонн являются их высота, размеры поперечного сечения, класс бетона по прочности на сжатие и содержание продольной арматуры (процент армирования), определяемые в зависимости от высоты здания, нагрузки на перекрытия (с учетом собственного веса перекрытий) и шага колонн.

При проектировании рекомендуется принимать оптимальные конструктивные параметры колонн, устанавливаемые на основе технико-экономического анализа. При этом минимальный размер поперечного сечения квадратных и круглых колонн (рис. 5.3) рекомендуется принимать не менее 30 см, для колонн с вытянутым поперечным сечением - не менее 20 см, класс бетона, как правило, - не менее В25 и не более В60, процент армирования в любом сечении (включая участки с нахлесточным соединением арматуры) - не более 10.

7.3 Конструктивные параметры колонн рекомендуется принимать одинаковыми на одном уровне перекрытий.

7.4 В тех случаях, когда технико-экономический анализ конструктивных параметров колонн показывает, что требуемое армирование превышает максимальные значения, приведенные в п. 7.3, рекомендуется применять сталежелезобетонные, в том числе трубобетонные, а также сталефибробетонные колонны.

В тех случаях, когда технико-экономический анализ конструктивных параметров колонн показывает, что требуемый класс бетона превышает В60, рекомендуется применять для колонн высокопрочный бетон классов В80 и выше. Расчет и конструирование сталежелезобетонных колонн, колонн с высокопрочным бетоном выше класса В80 следует производить по специальным документам, согласованным с НИИЖБ, а сталефибробетонных колонн - по СП 52-104.

7.5 Основными конструктивными параметрами стен являются размеры (толщина стен), класс бетона по прочности на сжатие и содержание вертикальной арматуры (процент армирования), определяемые в зависимости от высоты здания, нагрузки на перекрытия, шага стен.

При проектировании рекомендуется принимать оптимальные конструктивные параметры стен, устанавливаемые на основе технико-экономического анализа. При этом размеры поперечного сечения (толщину) стен рекомендуется принимать не менее 18 см, класс бетона - не менее В20, процент армирования в любом сечении стены (включая участки с нахлесточным соединением арматуры) - не более 10.

При применении высоких процентов армирования сечений должны выполняться указания СП 52-101 п. 8.3.3, при этом максимальная крупность заполнителя в бетонной смеси не должна превышать 10 мм.

7.6 При пролетах до 6-8 м перекрытия рекомендуется выполнять плоскими, при больших значениях - плоскими с капителями (рис. 5.4, а, б) или межколонными балками и стенами (рис. 5.5, а), а при пролетах до 12 м - с межколонными балками или стенами и ребристыми, и пустотными плитами (рис. 5.5, а, б).

Для зальных помещений пролетом 12-15 м рекомендуются кессонные, ребристые или пустотные плиты при опирании по четырем сторонам на балки и стены (рис. 5.5, в, г).

7.7 Основными конструктивными параметрами плоских плит перекрытий являются размеры поперечного сечения (толщина плиты), класс бетона по прочности на сжатие и содержание продольной арматуры, определяемые в зависимости от нагрузки на перекрытие и длины пролетов.

При проектировании рекомендуется принимать оптимальные конструктивные параметры перекрытий, устанавливаемые на основе технико-экономического анализа. При этом толщину плоских плит перекрытий сплошного сечения рекомендуется принимать не менее 16 см и не менее 1/30 длины наибольшего пролета и не более 25 см, класс бетона - не менее В20. Высота пустотных, ребристых и кессонных плит принимается не менее 25 см и не более 50 см, класс бетона - не менее В25.

7.8 При пролетах более 7 м рекомендуется применение дополнительной предварительно напряженной арматуры из высокопрочных канатов класса К-7 без сцепления с бетоном.

Для снижения массы перекрытий желательно применять легкие бетоны, пустотелые вкладыши или вкладыши в виде плит и блоков из особо легких бетонов.

7.9 В плоских плитах перекрытий, на густо армированных участках, вокруг колонн, где действуют максимальные поперечные силы, изгибающие и крутящие моменты, для предотвращения продавливания, упрощения армирования и облегчения бетонирования рекомендуется укладка фибробетона класса по прочности на растяжение не менее Bt2.

7.10 Основными конструктивными параметрами плоских фундаментных плит являются размеры (толщина плиты), класс бетона по прочности на сжатие и содержание продольной арматуры, определяемые в зависимости от реактивного давления грунта основания и шага колонн и стен.

При проектировании рекомендуется принимать оптимальные конструктивные параметры фундаментных плит, устанавливаемые на основе технико-экономического анализа. При этом толщину фундаментных плит рекомендуется принимать не менее 50 см и не более 200 см, класс бетона - не менее В20, армирование - не менее 0,3 %, а марку по водонепроницаемости - не менее W6.

7.11 Ребристые и коробчатые фундаменты состоят из плитных и стеновых элементов и применяются для повышения жесткости здания, а при высоте более 2 м и для использования подземного пространства в качестве технических этажей.

7.12 Свайные фундаменты состоят из монолитных ростверков в виде общих фундаментных плит, ленточных фундаментных плит под стенами, отдельно стоящих фундаментных плит под колоннами и забивных, буронабивных, буроинъекционных и других свай.

Тип и расположение свай по полю фундаментной плиты следует выбирать в зависимости от конструктивной системы здания, нагрузок, приходящихся на сваи и инженерно-геологических условий основания.

Расчет и конструирование свайных фундаментов следует производить по специальным нормативным документам.

7.13 Для обеспечения термической трещиностойкости массивных фундаментных плит объемом до 14000 м3 без разбивки на отдельные технологические блоки рекомендуется применять метод непрерывной укладки высокоподвижной и самоуплотняющейся смеси из модифицированных бетонов с низкой экзотермией и содержащие поликомпонентные модификаторы, разработанные в НИИЖБ.

7.14 Допускается не делать оклеечную гидроизоляцию для фундаментных плит и наружных стен подземных этажей при устройстве разработанных в НИИЖБ конструкций технологических и осадочных швов, предотвращающих протечки, и применении бетонов с компенсированной усадкой за счет добавки РД и маркой по водонепроницаемости W12-W16.

7.15 Для несущих элементов конструктивных систем зданий высотой более 75 м следует учитывать требования к конструктивным параметрам, регламентируемые специальными документами.

8 Расчет несущих железобетонных конструкций

8.1 Расчет несущих железобетонных элементов конструктивной системы (колонн, стен, плит перекрытий, покрытий и фундаментов) следует производить по предельным состояниям двух групп: по несущей способности (по прочности и устойчивости) и по эксплуатационной пригодности (по трещиностойкости и деформациям). При этом расчет на устойчивость отдельных сжатых элементов (колонн и стен) рекомендуется производить в рамках расчета по прочности этих элементов с учетом влияния продольного изгиба или в рамках расчета конструктивной системы по деформированной схеме, а расчет по деформациям элементов - в рамках расчета статически неопределимой конструктивной системы.

8.2 Расчет по прочности колонн следует производить по нормальным сечениям на действие изгибающих моментов и продольных сил и по наклонным сечениям на действие поперечных и продольных сил, полученных из расчета конструктивной системы (рис. 8.1).

Рисунок 8.1 - Схема усилий, действующих на выделенный стержневой элемент

Расчет по прочности колонн по нормальным сечениям рекомендуется производить по предельным усилиям или с использованием деформационной модели согласно СП 52-101.

Влияние продольного изгиба следует учитывать умножением изгибающих моментов, полученных из расчета конструктивной системы по недеформированной схеме, или эксцентриситета продольной силы на коэффициент, определяемый в зависимости от условной критической силы согласно СП 52-101.

8.3 Расчет по прочности плоских плит перекрытий, покрытий и фундаментных плит следует производить как плоских выделенных элементов на совместное действие изгибающих моментов в направлении взаимно перпендикулярных осей и крутящих моментов, приложенных по боковым сторонам плоского выделенного элемента, а также на действие продольных и поперечных сил, приложенных по боковым сторонам плоского элемента, полученных из статического расчета несущей конструктивной системы методом конечных элементов (рис. 8.2).

Рисунок 8.2 - Схема усилий, действующих на выделенный плоский элемент единичной ширины

Кроме того, при опирании плоских плит на колонны следует производить расчет плит на продавливание на действие сосредоточенных нормальных сил и моментов согласно СП 52-101. При применении сталефибробетона расчет производится по СП 52-104.

8.4 Расчет по прочности плоских плит в общем случае рекомендуется производить путем разделения плоского элемента на отдельные слои сжатого бетона, растянутой и сжатой арматуры и расчета каждого слоя отдельно на действие нормальных и сдвигающих сил в этом слое, полученных от действия изгибающих и крутящих моментов и нормальных сил (рис. 8.3).

Рисунок 8.3 - Схема усилий, действующих в бетонном и арматурном слоях выделенного плоского элемента плиты (усилия на противоположных сторонах условно не показаны)

Расчет плоских элементов плит может также производиться без разделения на слои бетона и растянутой арматуры на совместное действие изгибающих и крутящих моментов из условий, основанных на обобщенных уравнениях предельного равновесия:

                                                                         (8.1)

                                                                                                                (8.2)

                                                                                                                (8.3)

                                                                                                              (8.4)

где Мх, Мy, Mxy - изгибающие и крутящие моменты, действующие на выделенный плоский элемент;

Мх,ult, Мy,ult, Mxy,ult - предельные изгибающие и крутящие моменты, воспринимаемые плоским выделенным элементом.

Значения предельных изгибающих моментов Мх,ult и Мy,ult следует определять из расчета нормальных сечений, перпендикулярных осям Х и Y, плоского выделенного элемента с продольной арматурой, параллельной осям Х и Y, согласно СП 52-101.

Значения предельных крутящих моментов следует определять по бетону Mbxy,ult и по растянутой продольной арматуре Msxy,ult по формулам:

Mbxy,ult = 0,1rbb2h,                                                                                                   (8.5)

где b и h - соответственно меньший и больший размеры плоского выделенного элемента;

Msxy,ult = 0,5rs(Asx + Asy) h0,                                                                                         (8.6)

где Asx и Asy - площади сечения продольной арматуры в направлении X и Y;

h0 - рабочая высота поперечного сечения плиты.

Допускается применять и другие методы расчета по прочности плоского выделенного элемента, полученные на основе равновесия внешних усилий, действующих по боковым сторонам выделенного элемента и внутренних главных усилий в диагональном сечении плоского выделенного элемента.

При действии на выделенный плоский элемент плит также продольной силы расчет следует производить как для выделенного плоского элемента стен.

(Опечатка, Информационный бюллетень о нормативной, методической и типовой проектной документации, № 3 2008 г.)

8.5 Расчет плоского выделенного элемента на действие поперечных сил следует производить из условия:

                                                                                                        (8.7)

где Qx и Qy - поперечные силы, действующие по боковым сторонам плоского выделенного элемента;

Qх,ult и Qy,ult - предельные поперечные силы, воспринимаемые плоским выделенным элементом.

Значения предельных поперечных сил определяют по формуле:

Qult = Qb + Qsw,                                                                                                            (8.8)

где Qb и Qsw - предельные поперечные силы, воспринимаемые соответственно бетоном и поперечной арматурой и определяемые по формулам:

Qb = 0,5rbtbh0;                                                                                                             (8.9)

Qsw = qsw h0,                                                                                                                 (8.10)

где qsw - интенсивность поперечного армирования, определяемая по СП 52-101.

8.6 Расчет по прочности стен в общем случае следует производить как плоских выделенных элементов на совместное действие нормальных сил, изгибающих моментов, крутящих моментов, сдвигающих сил, поперечных сил, приложенных по боковым сторонам плоского выделенного элемента и полученных из расчета конструктивной системы методом конечных элементов (рис. 8.4).

Рисунок 8.4 - Схема усилий, действующих на выделенный плоский элемент единичной ширины стены (усилия на противоположных сторонах условно не показаны)

8.7 Расчет стен в общем случае рекомендуется производить путем разделения плоского элемента на отдельные слои сжатого бетона и растянутой и сжатой арматуры и расчета каждого слоя отдельно на действие нормальных и сдвигающих сил в этом слое, полученных от действия изгибающих и крутящих моментов, общих нормальных и сдвигающих сил.

Допускается производить расчет без разделения на слои бетона и растянутой арматуры отдельно из плоскости стены на совместное действие изгибающих моментов, крутящих моментов и нормальных сил и в плоскости стены на совместное действие нормальных и сдвигающих сил.

Расчет стены в своей плоскости рекомендуется производить из условий, основанных на обобщенных уравнениях предельного равновесия:

                                                                             (8.11)

                                                                                                                 (8.12)

                                                                                                                 (8.13)

                                                                                                               (8.14)

где Nх, Ny, Nxy - нормальные и сдвигающие силы, действующие по боковым сторонам плоского выделенного элемента;

Nх,ult, Ny,ult, Nxy,ult - предельные нормальные и сдвигающие силы, воспринимаемые плоским выделенным элементом.

Значения предельных нормальных сил Nх,ult и Ny,ult следует определять из расчета нормальных сечений, перпендикулярных осям X и Y, плоского выделенного элемента с вертикальной и горизонтальной арматурой, параллельной осям X и Y, согласно СП 52-101.

Значения предельных сдвигающих сил следует определять по бетону Nbxy,ult и по арматуре Nsxy,ult по формулам:

Nbxy,ult = 0,3RbAb,                                                                                                         (8.15)

где Ab - рабочая площадь поперечного сечения бетона выделенного элемента.

Nsxy,ult =0,5Rs Rb(Asx + Asy),                                                                                          (8.16)

где Asx и Asy - площадь сечения арматуры в направлении осей X и Y в выделенном элементе.

Расчет из плоскости стены производят аналогично расчету плоских плит перекрытий, определяя значения предельных изгибающих моментов с учетом влияния нормальных сил.

Допускается применять и другие методы расчета по прочности плоского выделенного элемента, полученные на основе равновесия внешних усилий, действующих по боковым сторонам выделенного элемента, и внутренних усилий в главном диагональном сечении выделенного элемента.

8.8 Расчет по прочности плоских выделенных элементов стен на действие поперечных сил следует производить аналогично расчету плит, но с учетом влияния продольных сил.

8.9 Расчет по трещиностойкости плит (по образованию и раскрытию трещин, нормальных к продольной оси элемента) следует производить на действие изгибающих моментов (без учета крутящих моментов) согласно СП 52-101.

8.10. При использовании в расчетах объемных конечных элементов (например, в толстых фундаментных плитах) растягивающие усилия должны быть восприняты продольной, поперечной или фибровой арматурой, а сжимающие усилия - бетоном.

9 Конструирование основных несущих железобетонных конструкций монолитных зданий

9.1 При конструировании основных несущих элементов конструктивной системы (колонн, стен, плит перекрытий и покрытий, фундаментных плит) следует соблюдать общие требования по конструированию железобетонных конструкций согласно СП 52-101, а также рекомендации раздела 7 настоящего СП.

9.2 Колонны армируют продольной, как правило, симметричной арматурой, расположенной по контуру поперечного сечения и, в необходимых случаях, внутри поперечного сечения, и поперечной арматурой по высоте колонны, охватывающей все продольные стержни и расположенной по контуру и внутри поперечного сечения.

Конструкцию поперечной арматуры в пределах поперечного сечения и максимальные расстояния между хомутами и связями по высоте колонны следует принимать такими, чтобы предотвратить выпучивание сжатых продольных стержней и обеспечить равномерное восприятие поперечных сил по высоте колонны.

9.3 Стены рекомендуется армировать, как правило, вертикальной и горизонтальной арматурой, расположенной симметрично у боковых сторон стены, и поперечными связями, соединяющими вертикальную и горизонтальную арматуру, расположенную у противоположных боковых сторон стены.

Максимальное расстояние между вертикальными и горизонтальными стержнями, а также максимальное расстояние между поперечными связями следует принимать такими, чтобы предотвратить выпучивание вертикальных сжатых стержней и обеспечить равномерное восприятие усилий, действующих в стене.

9.4 На торцевых участках стены по ее высоте следует устанавливать поперечную арматуру в виде П-образных или замкнутых хомутов, создающих требуемую анкеровку концевых участков горизонтальных стержней и предохраняющих от выпучивания торцевые сжатые вертикальные стержни стен.

9.5 Сопряжения стен в местах их пересечения следует армировать по всей высоте стен пересекающимися П-образными или гнутыми хомутами, обеспечивающими восприятие концентрированных горизонтальных усилий в сопряжениях стен, а также предохраняющими вертикальные сжатые стержни в сопряжениях от выпучивания и обеспечивающими анкеровку концевых участков горизонтальных стержней.

9.6 Армирование пилонов, занимающих по своим геометрическим характеристикам промежуточное положение между стенами и колоннами, производят как для колонн или как для стен в зависимости от соотношения длины и ширины поперечного сечения пилонов.

9.7 Количество вертикальной и горизонтальной арматуры в стене следует устанавливать в соответствии с действующими в стене усилиями. При этом рекомендуется предусматривать равномерное армирование по площади стены с увеличением армирования у торцов стены и у проемов.

9.8 Армирование плоских плит следует осуществлять продольной арматурой в двух направлениях, располагаемой у нижней и верхней граней плиты, а в необходимых случаях (согласно расчету) и поперечной арматурой, располагаемой у колонн, стен и по площади плиты.

9.9 На концевых участках плоских плит следует устанавливать поперечную арматуру в виде П-образных хомутов, расположенных по краю плиты, обеспечивающих восприятие крутящих моментов у края плиты и необходимую анкеровку концевых участков продольной арматуры.

9.10 Количество верхней и нижней продольной арматуры в плите перекрытий (покрытия) следует устанавливать в соответствии с действующими усилиями. При этом рекомендуется для нерегулярных конструктивных систем с целью упрощения армирования устанавливать: нижнюю арматуру одинаковой по всей площади рассматриваемой конструкции в соответствии с максимальными значениями усилий в пролете плиты; основную верхнюю арматуру принимать такой же, как и нижнюю, а у колонн и стен устанавливать дополнительную верхнюю арматуру, которая в сумме с основной должна воспринимать опорные усилия в плите. Для регулярных конструктивных систем продольную арматуру рекомендуется устанавливать по надколонным и межколонным полосам в двух взаимно перпендикулярных направлениях в соответствии с действующими в этих полосах усилиями.

Для сокращения расхода арматуры можно также рекомендовать установку по всей площади плиты нижней и верхней арматуры, отвечающей минимальному проценту армирования, а на участках, где действующие усилия превышают усилия, воспринимаемые этой арматурой, устанавливать дополнительную арматуру, в сумме с вышеуказанной арматурой, воспринимающей действующие на этих участках усилия. Такой подход приводит к более сложному армированию перекрытий, требующему более тщательного контроля арматурных работ.

Армирование фундаментных плит следует производить аналогичным образом.

9.11 В толстых фундаментных плитах помимо продольной арматуры, устанавливаемой у верхней и нижней граней плиты, следует предусматривать продольную арматуру, располагаемую в средней зоне по толщине плиты.

Для предотвращения продавливания плиты возле колонн и стен в плиты рекомендуется дополнительно укладывать в качестве одного из возможных способов сталефибробетон по СП 52-104.

9.12 Для сталебетонных конструкций в качестве жесткой арматуры следует применять прокатные стальные профили и другие элементы, марки стали которых принимать согласно СниП II-23.

9.13 Для снижения расхода стали и облегчения бетонирования в колоннах, балках и фундаментных плитах вместо стыковки стержневой арматуры диаметром 20 мм и более путем перепуска рекомендуется ее стыковать в торец с помощью ванной сварки или обжимных муфт.

Приложение А

Усилия от внешних нагрузок в сечении элемента

N, Nх, Ny - продольная сила;

Nxy - сдвигающая сила;

Mх, My - изгибающий момент;

Mxy - крутящий момент;

Qx, Qy - поперечная сила.

Характеристики материалов

Rb - расчетное сопротивление бетона осевому сжатию;

Rbt - расчетное сопротивление бетона осевому растяжению;

Rs - расчетное сопротивление арматуры.

Приложение Б

СНиП 2.01.07-85*

Нагрузки и воздействия

СНиП 2.02.01-83*

Основания зданий и сооружений

СНиП 2.03.11-85*

Защита строительных конструкций от коррозии

СНиП 21-01-97*

Пожарная безопасность зданий и сооружений

СНиП 31-01-2003

Здания жилые многоквартирные

СниП II-7-81*

Строительство в сейсмических районах

СниП II-23-81*

Стальные конструкции

ГОСТ 22690-88

Бетоны. Определение прочности механическими методами неразрушающего контроля

СТО 36554501-005-2006

Применение арматуры класса А500 СП в железобетонных конструкциях

СТО 36554501-006-2006

Правила по обеспечению огнестойкости и огнесохранности железобетонных конструкций

ТУ 14-1-5500-2004

Прокат свариваемый периодического профиля номинальным диаметром 5,5 мм для армирования железобетонных конструкций

ТУ 14-1-5501-2004

Прокат свариваемый периодического профиля в мотках для армирования железобетонных конструкций

Ключевые слова: конструктивная система, расчет несущих конструктивных систем, расчет несущих железобетонных конструкций, конструирование основных несущих железобетонных конструкций

gostrf.com

Строительство монолитных зданий и сооружений. Проектирование монолитных зданий

Монолитный железобетон в конструкциях многоэтажных зданий

Одним из путей повышения качественного уровня строительства, его эффективности, повышения архитектурного разнообразия и выразительности застройки является расширение применения монолитного железобетона.

Монолитные и сборные железобетонные конструкции не следует противопоставлять друг другу. Так, область рационального применения сборных железобетонных конструкций - массовое строительство жилых, общественных и промышленных зданий, где основной тенденцией является повышение индустриальности строительства, заводское производство изделий и их поточный монтаж на строительной площадке.

Система монолитных железобетонных рамок состоит из сети монолитных железобетонных горизонтальных и вертикальных элементов, армированных горизонтально железобетонными плитами. Бетон является самым дешевым строительным материалом сопротивления и, в отличие от дерева или металла, не требует специальных обработок. Кроме того, подготовка и ввод в эксплуатацию легко на месте, без необходимости в дополнительном оборудовании. Одним из недостатков будет длительное время достижения максимальной пропускной способности.

Арматура, те стальные стержни, встроенные в бетон, играют важную роль в поглощении напряжений, возникающих во время землетрясения, увеличивая прочность бетона и придавая ему необходимую эластичность для преодоления ударов. Представьте себе эти бары как пружины, как подвеска автомобиля.

Вместе с тем имеется широкая область гражданского и промышленного строительства, где рационально применение монолитного железобетона. Это - цельномонолитные гражданские и производственные здания, которые по своему назначению, градостроительному акцентному положению не могут быть выполнены из стандартных сборных железобетонных конструкций; устройство «столов» над первыми этажами панельных зданий, располагаемых на магистралях города, которые позволят получить современные решения магазинов и других крупных предприятий обслуживания населения; сборно-монолитные конструкции многоэтажных зданий - каркасных или панельных с монолитными ядрами жесткости; монолитные плоские безбалочные перекрытия под тяжелые нагрузки, необходимые, например, для объектов продовольственной программы - холодильников, овоще-, фруктохранилищ, мясокомбинатов и т. д.; отдельные нестандартные элементы общественных и производственных зданий - опорные конструкции, порталы, перекрытия, амфитеатры и балконы и др.; большепролетные конструкции; элементы реконструкции существующих зданий-жилых, общественных и производственных.

Фактически, структура здания напоминает костную систему человеческого тела. Это скелет, который поддерживает весь дом. Чтобы понять его важность, мы должны сначала знать, какие действия он подвергает. Таким образом, со временем здание нуждается не только в том, чтобы выдержать собственный вес, но и желательно справляться с внешними действиями: в землетрясении, при действии снега, выдерживать сильный ветер.

Их интенсивность варьируется от одной области к другой по всей Румынии, и эти значения находятся в специализированных картах - зонах сейсмической опасности, зонировании характерной снежной нагрузки на земле и т.д. Из всех упомянутых выше действий для Румынии самым опасным является землетрясение. При проектировании зданий это связано с горизонтальным движением земли, движениями, которые должны быть ослаблены структурой сопротивления.

Цельномонолитные здания - жилые, общественные, производственные - будут возводиться как с несущими стенами, так и с каркасными конструкциями в зависимости от технологических и функциональных требований.

Отличительной особенностью таких решений гражданских зданий является четкость и простота конструктивных форм, определяющая простоту и индустриальность возведения зданий: колонны - круглого или прямоугольного сечения; перекрытия - в основном безбалочные, обеспечивающие свободу в расстановке перегородок, т. е. свободу планировочных решений; вертикальные диафрагмы жесткости в таких зданиях упрощают конструкцию узлов сопряжения перекрытий с колоннами, работающими в этом случае только на вертикальные нагрузки; в перекрытиях укладываются все разводки труб для электро- и слаботочных устройств, что исключает необходимость в устройстве подвесных потолков или подсыпок под полы, в которых обычно размещают трубы.

По сравнению с другими европейскими странами, такими как Германия, Франция или Соединенное Королевство, для которых землетрясение имеет более низкую интенсивность и действует гораздо реже, землетрясение «играет» важную роль в Румынии. Структура сопротивления «всегда» вмешивается, чтобы ограничить ущерб, вызванный землетрясением, и обеспечить защиту конструкции в течение всего срока ее службы.

Для жилых, одно - или двухэтажных зданий вы можете выбрать любую структуру сопротивления: железобетонную конструкцию в рамах, структуру с деревянными рамами или деревянные стены, структуру в кирпичных стенах и т.д. Можно сказать, что в целом односемейный дом с кирпичной структурой становится дороже, чем дом со структурой из железобетонных каркасов из-за требований к дизайну кирпичного завода в Румынии. Но также верно, что кладочный дом с некоторым регулярным архитектурным соответствием может быть столь же дешевым, как железобетонная конструкция.

Удачным примером сооружения из монолитного железобетона может служить аудиторный корпус МИСИ им. Куйбышева на Ярославском шоссе в Москве. Задуманной объемно-планировочной композиции в наибольшей мере отвечало конструктивное решение из монолитного железобетона, из которого выполнены несущие внутренние (радиальные и кольцевые) и наружные стены, перекрытия, покрытие, фундаменты. Наружные стены утеплены изнутри набрызгом пенополиуретана.

То же самое относится к деревянным домам с поправкой, что в Румынии нет традиций такого рода деревянных домов, вкус людей, направляемых на другие типы. Но это не означает, что древесина как структура сопротивления не может отвечать тем же требованиям, что и все другие типы. Этот тип используется в некоторых горных районах, но в сочетании с железобетонной структурой. Как правило, система типа первого этажа и пол из деревянных панелей.

Бетонный слой, покрывающий армирование железобетонной плиты на открытом воздухе, чтобы защитить ее от воздействия окружающей среды. Бетонная плита, усиленная, используется в массивных конструкциях, которая допускает, что бетон в области, подвергающейся растягивающим усилиям, берет на себя некоторые из этих усилий.

Аналогичные конструктивные приемы закладываются в проектах нового корпуса библиотеки им. Ленина, Музея изобразительных искусств им. Пушкина, административном здании ВЦСПС на Ленинском проспекте в Москве и др. При реконструкции центральной части города монолитный железобетон найдет применение как для строительства цельномонолитных жилых и общественных зданий (в конструкциях жилых домов с несущими стенами или с каркасными остовами общественных зданий, позволяющими получить индивидуальные объемно-планировочные решения застройки), так и при реконструкции существующих зданий - жилых, общественных и производственных, которые характеризуются случайным, нестандартным расположением несущих конструкций - для замены деревянных перекрытий, устройства каркаса или дополнительных стен; для усиления существующих конструкций - фундаментов, колонн, стен, перекрытий.

Материал был изобретен в Швеции в начале второй. Большие аэрированные блоки в результате реакции между алюминиевым порошком и кислотой подвергают автоклавированию, что приводит к выбросу двуокиси кремния и кварца. Далее следует упрочнение блока, который затем разрезается на меньшие блоки для кладки.

Его получают путем смешивания раствора с количеством ионизированной пены в бетоне. Результатом является жидкий ячеистый бетон, который наливается в формы, чтобы затвердеть. Полученные таким образом кирпичи используются в различных конструкциях. Искусственный камень, полученный путем закалки гравия, песка, цемента и воды.

Применение для многоэтажных каркасных зданий пространственных ядер жесткости, выполняемых в монолитном железобетоне, позволяет возводить эти здания с усложненной конфигурацией в плане, с разнообразными объемно-планировочными решениями. В конструктивном же отношении образование сплошного, коробчатого в плане, сечения ядра жесткости вместо плоских стен жесткости во много раз увеличивает пространственную жесткость здания, а также позволяет значительно снизить расход бетона и стали. Технико-экономические исследования показали, что основные показатели строительства многоэтажных зданий с монолитным ядром жесткости по сравнению со зданиями из обычных сборных конструкций, приведенные к 1 м полезной площади, снижаются по трудоемкости до 10 .., 15 %, по себестоимости изготовления и монтажа изделий - до 15%, по расходу стали -до 30 %, цемента - до 10 %. Скорость возведения ядра составляет 3... 4 м в сутки, что позволяет строить такие сооружения быстрыми темпами. Все несущие конструкции, кроме ядра жесткости, а также ограждающие и элементы «начинки» дома осуществляются в сборных железобетонных конструкциях из унифицированных изделий Единого каталога.

Композитный материал, состоящий из минеральных заполнителей и отвердителя. Для цементного бетона отвердитель состоит из воды и цемента. Для асфальтобетона, отвердитель изготовлен из битумной добавки. Комплексная система, с помощью которой бетон взаимодействует со стальными стержнями.

Агрегаты смешиваются с битумным связующим. Это часть категории композитных материалов. Бетон вводится в работу путем центрифугирования с использованием специальной машины, поэтому он более компактен. Центрифугирование можно производить только в форме революционного тела, обычно цилиндрического.

Одним из эффективных направлений в строительстве многоэтажных объектов является применение сборно-монолитных крупнопанельных жилых домов. Дело в том, что возведение зданий из стандартных панелей ограничивается высотой в пределах 20 ... 25 этажей. При такой этажности в панелях возникают значительные усилия от ветровых нагрузок, которые приводят к исчерпанию их несущей способности. Возможным решением проблемы увеличения высоты сооружений может быть сочетание панельной системы с монолитным ядром жесткости, которое воспримет все горизонтальные нагрузки, действующие на здания, «освобождая» панели для работы только на вертикальные нагрузки.

Простой бетон, масса, в которую были встроены, литье, валуны из натурального камня или блоки, полученные при сносе бетона или кирпичной кладки. Циклонные бетоны используются в фундаменте или на возвышенных стенах для сохранения бетона, поэтому цемент.

Легкий бетон, препарат которого используется в качестве агрегатов органических материалов, минерализуется заранее. Название используется со ссылкой на детали и элементы конструкции из бетона или железобетона, отлитого на месте. Железобетон, в котором индуцированные инверсией напряжения были вызваны теми, которые заданы рабочей нагрузкой.

Другое направление развития многоэтажного строительства из монолитного железобетона связано с использованием легкого монолитного бетона на пористых заполнителях - одного вида бетона для несущих и ограждающих конструкций, в частности керам-зитобетона класса В15 с плотностью до1600кг/м3.

Рациональной областью применения монолитного железобетона являются конструкции перекрытий под большие нагрузки, в частности безбалочные перекрытия. Возведение таких перекрытий методом подъема - один из прогрессивных методов. Основные особенности метода подъема перекрытий заключаются в изготовлении «пакета» перекрытий в виде плоских безбалочных монолитных железобетонных плит на уровне земли (например, на фундаментной плите или перекрытии над подвалом) и постепенном подъеме этих перекрытий по направляющим опорам. Направляющими опорами служат сборные железобетонные или металлические колонны, а также монолитные железобетонные ядра жесткости, возводимые в переставной или скользящей опалубке. Конструкции перекрытий поднимают с помощью специальных домкратов, устанавливаемых на колоннах.

Бетон для приготовления таких агрегатов, как гранулированный доменный шлак, зола, огнеупорный материал и т.д. Чтобы выдерживать длительные периоды при высоких температурах. Бетонный цемент с обычными агрегатами, невооруженный. Легкий бетон с отверстиями в массе. Губчатые бетоны - это бетон и газобетон.

Цементный бетон вводится в эксплуатацию, проектируя его под давлением, используя распылительную установку. В соответствии с подготовленными материалами и методом подготовки выделяются четыре категории легкого бетона: легкие агрегаты, момогранулярный бетон, губчатый бетон и органические агрегаты.

Достоинствами метода подъема перекрытий являются: возможность создавать разнообразные объемно-планировочные решения зданий как с помощью изменения конфигурации только бортовой опалубки перекрытий, так и благодаря отсутствию выступающих из перекрытий балок и ригелей, произвольному расположению в плане колонн; комплексная механизация процессов возведения зданий, удобство выполнения значительной части работ на уровне земли; возможность возводить объекты в условиях ограниченной строительной площадки (благодаря отсутствию наземных кранов и минимальных площадей для складирования материалов), что имеет особо важное значение в условиях строительства на сложном рельефе или на затесненных площадках среди существующей городской застройки.

Бетон извлекается сразу после литья большей части воды, путем вакуумирования, для ускорения его затвердевания и улучшения его структуры. При использовании процесса вакуумирования достигается экономия цемента, и можно использовать жидкости, легко обрабатываемые.

Бетонный цемент, который благодаря вибрации улучшает разряд и, следовательно, повышает сопротивление. Вибрация выполняется с помощью вибраторов. Операция введения свежеприготовленной бетонной пасты с минеральным связующим в строительные блоки, раскопки фундаментов или форм готовых деталей, или применение бетонной пасты на поверхности древесины, бетона, кирпича, камня или кролика, строительных элементов, которые должны быть покрыты бетонным слоем.

Новой областью является применение рельефного монолитного бетона, в решении фасадов и интерьеров зданий так называемого «архбетона», предусматривающего использование различных сменяемых матриц, изготовляемых, как правило, из синтетических материалов и закладываемого в опалубку перед бетонированием.

Большие возможности в развитии монолитного строительства связаны с расширением применения так называемого самонапрягающегося бетона на цементах НЦ. Этот бетон благодаря высокой плотности и соответственно водонепроницаемости позволяет эффективно решать конструкции таких элементов зданий и сооружений, где необходима водозащита, например подземные сооружения, в том числе подвалы зданий, покрытия стилобатов, кровельные покрытия, трибуны открытых спортивных сооружений, мостовые сооружения, бассейны, градирни, резервуары и т. п. Практика применения самонапрягающегося бетона показала его надежные гидроизоляционные качества при возведении ванн бассейнов, покрытий стилобатов в конструкциях трибун стадионов и других сооружений, где его применение позволяло отказаться от устройства традиционной оклеечной гидроизоляции и получить надежную долговечную гидроизоляционную защиту.

Смеситель, используемый для роторного смешивания материалов, из которых готовят цементный бетон. Он изготавливается либо из барабана, где материал смешивается с помощью поддонов, установленных на вращающемся валу, или вращающегося, наклоняющегося или не опрокидывающего барабана, внутри которого закреплены несколько крыльев для лучшего смешивания бетона. Бетоносмесители обычно оснащены зарядными устройствами, иногда автоматическими, с заполнителями, цементом и водой.

Сборные бетонные блоки, используемые для туннельной одежды. Это важная операция в конкретных технологиях, которая направлена ​​на полное заполнение опалубки, сокращение промежутков между гранулами и частичное удаление воздуха. Работоспособность бетона.

Рассматривая перспективы применения монолитного железобетона, необходимо отметить, что речь идет о качественно новом техническом уровне его использования. Этот уровень характеризуется принципиально иным подходом ко всему комплексу вопросов его внедрения: проектированию, изготовлению опалубки, оснастки и арматурных изделий, транспортированию бетонной смеси и ее укладки, способам интенсивного твердения бетона. Комплексное решение этих и ряда организационных вопросов позволит создать индустрию монолитного железобетона.

Это особенность, которая указывает на легкость, с которой она может быть введена в эксплуатацию, сохраняя однородную структуру с момента подготовки и до литья. Название даты круглых или гладких круглых стержней, имеющих выступы, предназначенные для армирования железобетона.

Автоклавный ячеистый бетонный раствор. Автоклавный клеточный элемент небольшого размера толщиной от 50 до 150 мм, рассчитанный в зависимости от плотности либо термоизоляции плоскостей или стен, либо реализации стенок светлого отсека. Сборная бетонная плита, квадратная или прямоугольная, с мозаичным слоем износа для внутренних полов или круглых гусениц. Эквивалентный термин: мозаичная плита.

Классификация дверей

Классификация и конструкция окон

Окна и двери

Классификация и конструкция окон. - Классификация дверей.

Окна являются ограждающими элементами здания и не только обеспечивают помещения естественным освещением и вентиляцией, но и обладают соответствующими теплотехническими и акустическими качествами.

Он монтируется в ступке раствора на бетоне или песчаном слое без раствора. Эквивалентный термин: бетонные тротуарные плиты. Процедура увеличения несущей способности некоторых типов сборных плоскостей пола путем заливки сборных элементов монолитного бетона с подкреплениями или без них.

Увеличение объема бетонной детали во время захвата и арматуры, вызванное присутствием в цементе слишком больших количеств оксида магния, триоксида серы или, в частности, оксида кальция, который реагирует с водой или другими веществами, что приводит к экспансивным соединениям, или путем увеличения содержания влаги в бетоне после отверждения, тем самым раздувая гели. Набухание бетона, как и его отвод, может привести к разрушению заготовки, если эти явления проявятся с высокой интенсивностью.

В состав заполнения оконного проема (оконного заполнения) входят: оконная коробка, вставляемые в нее переплеты, подоконная доска и наружный слив. Оконные переплеты, состоящие из открывающихся, глухих или комбинированных створок, определяют тип окна: одно-, двух- и трех- створчатое окно или окно с балконной дверью.

Типы и размеры окон стандартизованы и сведены в ГОСТ. Они бывают:

Эксплуатация улучшения качества бетона путем извлечения избыточной воды перед розеткой путем создания противодавления спереди бетона с помощью присосок. Эквивалентный член: уплотнение вакуумом. Операция выполняется одновременно с помощью соответствующей установки, как в однородном слое, так и при отливке литого бетона.

Конструкции на подпорных стенах сборного железобетона. Использование конструкций сопротивления в больших сборных панелях является одним из способов интенсивного промышленного строительства на современном этапе. Структурная прочность зданий, выполненных из мраморных панелей, состоит из набора вертикальных диафрагм и горизонтальных диафрагм, которые с соответствующими конструкциями обеспечивают жесткую космическую систему с высокой устойчивостью и устойчивостью к действию вертикальных и горизонтальных нагрузок.

а) одностворчатые;

б) двухстворчатые;

в) окно с балконной дверью;

г) разрезы по окнам с раздельной и общей коробками.

Оконная коробка является обязательным элементом окна с деревянными переплетами и состоит из боковых косяков, вершника и нижней обвязки. При больших размерах окна коробка может иметь дополнительные горизонтальные или вертикальные элементы (импосты).

Эти структуры часто используются в жилых зданиях, отелях, незнакомых домах, школах-интернатах, а также в социальных и культурных зданиях с жилой конструктивной системой. Структуры в больших сборных панелях имеют некоторые преимущества перед монолитными структурами, такими как: повышение производительности труда, сокращение времени выполнения, сокращение потребления материалов, выполнение работ и холодная погода с минимальными затратами.

У этих структур также есть некоторые недостатки: невозможность последующих функциональных изменений, стоимость все еще высокая по сравнению с монолитными структурами, полностью незастрахованная от монолитной структуры и т.д. Эти ограничения могут быть уменьшены в зависимости от местных условий. Повысить долговечность зданий.

Коробку в проеме крепят костылями или длинными гвоздями, забиваемыми через коробку в антисептированные деревянные пробки, специально закладываемые в стену по ходу кладки. Щель между коробкой и кладкой со стороны фасада заделывают раствором, с внутренней стороны оконные откосы штукатурят.

Конструкция окон приведена на рис. 69.

Рама - основная часть окна, которая состоит из многокамерного профиля из дерева, пластика или иного материала. Рама устанавливается непосредственно в оконный проем и должна обладать особой прочностью, чтобы выдержать вес створок со стеклопакетами.

Створка изготавливается из того же материала, что и рама. Створка необходима для того, чтобы в окне были открывающиеся части. Вариантов открывания может быть несколько: откидное, поворотное, поворотнооткидное.

Импост нужен для разделения окна на несколько секций, соединяя створки в одном окне. Его можно увидеть, если открыть двухстворчатое окно.

Штульп непосредственно соединяет несколько створок между собой.

Фурнитура - внутренний механизм окна, который позволяет выполнять некоторые подвижные функции окна, например открывать или вентилировать.

Герметичная конструкция из нескольких стекол называется стеклопакетом . Между стеклами находится специальная рамка с перфорацией,которая поглащает остаточную влагу. Между стеклами может быть либовоздух, либо газ (аргон).

Резиновые уплотнители служат для плотного соединения всей конструкции, улучшая герметичность.

Штапиком закрепляется стеклопакет в створке.

Декоративные элементы могут изменить общий вид окна, что иногда важно для стиля дизайна помещения.

Подоконник - плоская горизонтальная панель, обычно из ПВХ или дерева.

Отлив - внешний элемент окна в виде карниза или козырька.

Откосы - панели или штукатурка, которые закрывают торцевые части стены сверху и сбоку.

Рис. 69. Детали (а ) и разрез (б ) окна: 1 - рама; 2 - створка; 3 - импост; 4 - штульп; 5 - фурнитура; 6 - стеклопакет; 7 - уплотнители; 8 - штапик; 9 - раскладка; 10 - подоконник; 11 - отлив; 12 - откосы

Заполнение дверного проема состоит из дверной коробки и одного или более дверных полотен.

Двери различают по назначению : наружные (входные и балконные), внутренние и шкафные.

Также по способу открывания : распашные, раздвижные, вращающиеся и складчатые.

Рис. 70. Типы дверей: а - распашные; б - раздвижные; в - складчатые; г - вращающиеся

Наиболее распространены распашные двери, которые, в зависимости oт числа полотен, называют однопольными, двухпольными и при двух полотнах неравной ширины - полуторными.

ГОСТ предусматривает высоту дверей от 200 до 240 см, ширину однопольных дверей 60, 70. 80 и 90 и двухпольных - от 120 до 160 см. Ширина дверей принимается в соответствии с ГОСТом.

Ширина внутриквартирных дверей принимается в зависимости от назначения комнаты. Двери, предназначенные для эвакуации людей при стихийных бедствиях, должны открываться наружу.

Дверные коробки выполняют из брусков толщиной 47, 57 и 77 мм.

Они состоят из косяков, вершника и порога, в которых отобраны четверти по толщине дверного полотна. При устройстве над дверью светового проема (фрамуги) в коробках предусматривают горизонтальный импост, разделяющий дверное полотно и фрамугу.

Коробки двойных балконных дверей выполняют по типу оконных коробок. Крепление деревянных дверных коробок в каменных стенах аналогично креплению оконных коробок. Коробки к перегородкам крепят гвоздями. В гипсолитовых перегородках и в перегородках из плит коробку крепят к брускам каркаса перегородки. Примыкание коробки к перегородке закрывают наличниками.

Дверные полотна могут быть филенчатыми, щитовыми и плотничными. Полотна филенчатых и щитовых дверей могут быть глухими или остекленными, с защитой остекления стальной сеткой или без нее.

Монолитные железобетонные конструкции, выполняемые непосредственно на строительных площадках, обычно применяются в зданиях и сооружениях, трудно поддающихся членению, при нестандартности и малой повторяемости элементов и при особенно больших нагрузках (фундаменты, каркасы и перекрытия многоэтажных промышленных зданий, гидротехнические, мелиоративные, транспортные и др. сооружения). В ряде случаев они целесообразны при выполнении работ индустриальными методами с использованием инвентарных опалубок - скользящей, переставной (башни, градирни, силосы, дымовые трубы, многоэтажные здания) и передвижной (некоторые тонкостенные оболочки покрытий). Возведение монолитных железобетонных конструкций технически хорошо отработано; значительные достижения имеются также в применении метода предварительного напряжения при производстве монолитных конструкций. В монолитном железобетоне выполнено большое количество уникальных сооружений (телевизионные башни, промышленные трубы большой высоты, реакторы атомных электростанций и др.).

Монтаж арматурного каркаса осуществляют на основе проекта или указаний проектировщика. Бетонирование начинают только после разрешения инженера по техническому контролю. При индивидуальном строительстве технический контроль практически отсутствует в ущерб качеству работ. Наиболее часто повторяющейся ошибкой является то, что во время бетонирования монолитных железобетонных плит бетонщики затапливают готовый арматурный каркас. В железобетонных плитах и балках сверху и снизу должны располагаться стальные арматурные стержни, их число и место расположения рассчитываются конструктором. Обычно их размещают в растянутом поясе, который располагают сверху или снизу в зависимости от того, как работает балка под действием нагрузки (рис. 71).

Для обеспечения непрерывного бетонирования конструкции бетон обычно доставляют по верху арматурного каркаса, поскольку свежеуложенный бетон не способен нести нагрузки. Накат для транспортировки с помощью носилок, обычных тачек, тачек «кули» устраивают из досок таким образом, чтобы колесами не повредить арматуру. Очень опасно повреждение арматуры в верхнем растянутом поясе в случае, если консольная балка одним концом жестко закреплена несущей конструкцией. Это балконные плиты (рис. 72), галереи или так называемые консольные лестницы. Часто недопонимают значения армирования железобетонных конструкций в верхнем поясе.

Рис. 71. Растянутый и сжатый пояса в балках на двух опорах и в консольной балке; 1 - растянутый пояс, 2 - сжатый пояс, 3 – нагрузка

Рис. 72. Бетонирование балконной плиты по примятой арматуре

Даже в практике государственного строительства иногда перед бетонированием старательно притаптывают арматуру, не понимая, что прутья арматуры располагаются по расчету попеременно - внизу и вверху.

Точность при монтаже арматуры очень трудно выдержать, особенно в индивидуальном строительстве, где приспособления для гибки и резки арматуры значительно проще, чем в государственном. Наиболее распространенной ошибкой является заблуждение в том, что проектировщик все конструкции рассчитывает с большим запасом. Такая точка зрения порождает безответственность.

Рис. 73. Разрушение балки из-за отсутствия арматуры, работающей на скалывание; 1 - железобетонная балка, 2 - трещины от скалывающих напряжений, 3 – арматура, работающая на срез, 4 - хомут, 5 - опора балки, 6 - нагрузка

Неправильное расположение арматуры, работающей на срез, в балке вблизи опор - пример плохого армирования. Наибольшие величины скалывающих напряжений находятся как раз у опор, их уравновешивает прочность бетона, применение так называемых хомутов и несущая способность арматуры, рассчитанной на скалывающие усилия (рис. 73).

Расположенные в этом месте нижние и верхние стальные стержни также участвуют в восприятии поперечной силы среза. Неправильное размещение арматуры, работающей на срез, в наиболее опасных местах вблизи опор ослабляет поперечное сечение и железобетонная балка «срезается», потому что совместного противодействия бетона и хомутов часто не хватает, чтобы уравновесить скалывающие усилия. Неправильное армирование уже явилось причиной разрушений множества монолитных железобетонных лестниц, когда арматуру, работающую на растяжение, укладывали вдоль линии перелома конструкции (рис. 74). В таком случае под действием нагрузки арматура распрямляется, балка разрушается. При нормальной укладке арматуры нижние растянутые стержни выводят в сжатый пояс, где их и закрепляют. Подобную описанной выше ошибку допускают при армировании углов рамных конструкций (рис. 75). Неправильное армирование вызывает трудности и при бетонировании: между стержнями арматуры сильно нагруженных балок невозможно уложить бетон. После распалубки обнаруживают, что под стальными вкладышами нет бетона и балка непригодна для восприятия нагрузки, а арматура не защищена от коррозии.

Рис. 74. Расположение арматуры в железобетонной лестнице: а - правильное, б - неправильное

Рис. 75. Расположение арматуры в углах железобетонной балки: а - правильное; б - неправильное

Ремонт требует тщательной работы. При обнаружении дефекта слабые участки бетона удаляют, место разделывают для повторного бетонирования. Подготовленные для ремонта пустоты обустраивают опалубкой; желательно использовать так называемую опалубку с карманами, суть которой состоит в том, что пустоты заполняют с «переполнением» и в бетоне не остается воздушных пузырей. Излишние выступы бетона после твердения скалывают. После устройства опалубки подготовленное для бетонирования место очищают от пыли и грязи; очищенную поверхность тщательно увлажняют, иначе затвердевший бетон поглощает влагу из свежеуложенного ив бетонной смеси остается недостаточное для схватывания количество воды, бетон «перегорает» и конструкция не набирает положенной прочности.

Состав бетонной смеси для устранения недоделок определяют в зависимости от потребностей. За основу принимают ремонтную бетонную смесь, приготовленную с минимальным количеством воды, чтобы избежать повышенной усадки, которая вызывает раскрытие трещин по границе старого и нового бетона.

mtlarena.ru


Смотрите также