Изготовление дверей

Медь или алюминий что мягче


Алюминий

Медь

Лекция 4. Материалы высокой проводимости

К группе проводниковых материалов принято относить проводники с удельным электрическим сопротивлением в нормальных условиях не более 10-7 Ом×м. Наиболее распространенными среди этих материалов являются медь и алюминий.

Медь – элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое вещество медь – это пластичный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). Медь на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Преимущества меди, обеспечивающие её широкое применение в качестве проводникового материала, следующие: 1) малое удельное сопротивление (из всех металлов только серебро имеет несколько меньшее удельное сопротивление, чем медь); 2) достаточно высокая механическая прочность; 3) удовлетворительная в большинстве случаев стойкость к коррозии (даже в условиях повышенной влажности медь окисляется на воздухе значительно медленнее, чем, например, железо; интенсивное окисление меди происходит только при повышенных температурах; 4) хорошая обрабатываемость: медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра; 5) относительная легкость пайки и сварки.

Свойства меди.Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности после серебра, удельная проводимость при 20 °C 55 – 58 МСм/м). Плотность 8,96 г/см3, Тпл = 1083 оС,

Существует ряд сплавов меди: латуни – с цинком, бронзы – с оловом и другими элементами, мельхиор – с никелем, баббиты – со свинцом, и другие.

Удельная проводимость меди весьма чувствительна к наличию примесей и снижается в зависимости от вида примеси: Zn, Cd, Ag – на 5% ; Ni, Sn, Al ‒ на 25–40%; Be, As, Fe, Si, P – на 55%. В то же время присадки многих металлов повышают механическую прочность и твердость меди.

Получение меди.Медь получают путем переработки сульфидных руд, чаще других встречающихся в природе. После ряда плавок руды и обжигов с интенсивным дутьем, медь обязательно подвергают электролитической очистке. Можно получить различную по физическим свойствам медь:

– методом холодной протяжки получают твердую медь (ТМ), которая имеет высокий предел прочности при растяжении, твердость и упругость при изгибе; проволока из твердой меди несколько пружинит. Имеет малое относительное удлинение при изгибе;

– методом отжига получится мягкая медь (ММ), которая пластична, обладает малой твердостью и прочностью, более высокой удельной проводимостью. Также обладает весьма большим относительным удлинением при разрыве.

Применение меди.Медь применяют в электротехнике для изготовления проводов, кабелей, шин распределительных устройств, обмоток трансформаторов, электрических машин, токоведущих деталей приборов и аппаратов, анодов в гальваностегии и гальванопластике. Медные ленты используют в качестве экранов кабелей. Твердую медь употребляют в тех случаях, когда необходимо обеспечить особенно высокую механическую прочность, твердость и сопротивляемость истиранию, например, для изготовления неизолированных проводов. Если же требуется хорошая гибкость и пластичность, а предел прочности на растяжение не имеет существенного значения, то предпочтительнее мягкая медь (например, для монтажных проводов и шнуров). Из специальных электровакуумных сортов меди изготавливают детали клистронов, магнетронов, аноды мощных генераторных ламп, выводы энергии приборов СВЧ, некоторые типы волноводов и резонаторов. Кроме того, медь используют для изготовления фольгированного гетинакса и применяют в микроэлектронике в виде осажденных на подложки пленок, играющих роль проводящих соединений между функциональными элементами схемы. Несмотря на большой коэффициент линейного расширения по сравнению с коэффициентом расширения стекол, медь применяют для спаев со стеклами, поскольку она обладает рядом замечательных свойств: низким пределом текучести, мягкостью и высокой теплопроводностью. Для впаивания в стекла медному электроду придают специальную форму в виде тонкого рантика, благодаря чему такие спаи называют рантовыми.

Недостатком меди является ее подверженность атмосферной коррозии с образованием окисных и сульфидных пленок. Скорость окисления быстро возрастает при нагревании, однако прочность сцепления окисной пленки с металлом невелика. Вследствие окисления медь не пригодна для слаботочных контактов. При высокой температуре в электрической дуге окись меди диссоциирует, обнажая металлическую поверхность. Металлическое отслаивание и термическое разложение вызывает повышенный износ медных контактов при сильных токах.

Алюми́ний – элемент главной подгруппы третьей группы третьего периода периодической системы химических элементов, с атомным номером 13. Обозначается символом Al (лат. Aluminium). Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния). Простое вещество алюминий – лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия. Плотность 2,7 г/см3, Тпл = 660 оС.

Алюминий – второй по значению (после меди) проводниковый материал – металл серебристо-белого цвета, важнейший из так называемых легких металлов. Удельное сопротивление алюминия в 1,6 раза больше удельного сопротивления меди, но алюминий в 3,5 раза легче меди. Благодаря малой плотности обеспечивается большая проводимость на единицу массы, т. е. при одинаковом сопротивлении и одинаковой длине алюминиевые провода в два раза легче медных несмотря на большее поперечное сечение. К тому же по сравнению с медью алюминий намного больше распространен в природе и характеризуется меньшей стоимостью. Отмеченные обстоятельства обусловливают широкое применение алюминия в электротехнике. Алюминий получают электролизом глинозема Al2O3 в расплаве криолита Na3AlF6.

Преимущества алюминия, которые обеспечивают ему широкое применение в качестве проводникового материала, следующие:

– малая плотность (легкий материал);

– дешевизна и доступность;

– распространенность в природе (1-е место по количеству среди металлов в земной коре).

Пленки алюминия широко используют в интегральных микросхемах в качестве контактов и межсоединений. Последние обеспечивают связь между отдельными элементами схемы и внешние присоединения. Нанесение пленок на кремниевые пластинки обычно производят методом испарения и конденсации в вакууме. Требуемый рисунок межсоединений создается с помощью фотолитографии. Преимущества алюминия как контактного материала состоит в том, что этот материал легко напыляется, обладает хорошей адгезией к кремнию и плёночной изоляции из SiO2, широко используемой в полупроводниковых интегральных схемах, обеспечивает хорошее разрешение при фотолитографии. Пленки алюминия широко используют в интегральных микросхемах в качестве контактов и межсоединений. Последние обеспечивают связь между отдельными элементами схемы и внешние присоединения. Преимущества алюминия как контактного материала состоят в том, что этот материал легко напыляется, обладает хорошей адгезией к кремнию.

Недостатком алюминия является значительная подверженность электромиграции, что приводит к увеличению сопротивления или даже разрыву межсоединения, также у алюминия низкая механическая прочность. Отожженный алюминий в три раза менее прочен на разрыв, чем отожженная медь.

Отдельно стоит поговорить о поверхности алюминия, так как он активно окисляется, покрываясь тонкой пленкой окиси с большим электрическим сопротивлением. Такая пленка предохраняет алюминий от коррозии, но создает большое переходное сопротивление в местах контакта алюминиевых проводов, что делает невозможным пайку алюминия обычными методами. Поэтому для пайки алюминия используют ультразвуковые паяльники или пасты-припои. Более толстый слой окисла, который создает надежную электрическую изоляцию на сравнительно высокие напряжения, получают с помощью электрохимической обработки алюминия. Наиболее широкое применение оксидная изоляция получила в электролитических конденсаторах. Ее используют также и в некоторых типах выпрямителей и разрядников. На практике важное значение имеет вопрос защиты от гальванической коррозии в местах контакта алюминия и меди. Если область контакта подвергается воздействию влаги, то возникает местная гальваническая пара с довольно высоким значением э. д. с., причем полярность этой пары такова, что на внешние поверхности контакта ток направлен от алюминия к меди, вследствие чего алюминиевый проводник может быть сильно разрушен коррозией. Поэтому места соединения медных проводников с алюминиевыми должны быть тщательно защищены от увлажнения.

Page 2

Токсичность алюминия для человеческого организма является предметом дискус­сий долгие годы. Еще в 1886 г., когда только начали использовать алюминий для изго­товления кухонной посуды, считали, что потребление этого металла вызывает от­равление. В настоящее время в публикуемых сообщениях содержатся противоречи­вые сведения по поводу возможности возникновения пищевого отравления при использо­вание алюминиевой посуды.

Алюминий не относится к биомикроэлементам. В России он содержится в природных водах в концентрациях 0,001... 10 мг/л. В промышленных сто­ках его концентрация достигает 1 000 мг/л. Продукты растительного проис­хождения содержат алюминия 10... 100 мг/кг, редко - 300 мг/кг; продукты животного происхождения — 1...20 мг/кг. По данным исследований суточное потребление алюминия в среднем составляет 25 мг.

Первые данные о токсичности алюминия были получены в 70-х гг. XX в., и это явилось неожиданностью для человечества. Будучи третьим по распро­страненности элементом земной коры (8,8 % массы земной коры составляет А1) и обладая ценными качествами, металлический алюминий нашел широкое применение в технике и быту. Обогащение пищи алюминием может происхо­дить в процессе ее приготовления или хранения в алюминиевой посуде. В процессе приготовления пищи в алюминиевой посуде содержание алюминия в ней может увеличиться в 2 раза. Растворимость алюминия возрастает в кислой или щелочной среде. К веществам, усиливающим растворе­ние алюминия, относят антоциановые пигменты из овощей и фруктов, анионы органических кислот, поваренную соль. В последнее время за рубежом алю­миний все чаще применяется для изготовления консервных банок, предназна­ченных для хранения безалкогольных напитков, посуды, фольги, эластичных упаковок. В пиве и безалкогольных напитках, содержащихся длительное вре­мя в алюминиевых банках, концентрация алюминия составляла 10 мг/л. Отме­чается, что при использовании алюминиевой посуды некоторые пигменты, со­держащиеся в продуктах, теряют окраску. Поставщиками алюминия в орга­низм человека также является вода, которая обогащается ионами А13+ при об­работке ее сульфатом алюминия на водоочистительных станциях.

Существенную роль в загрязнении окружающей среды ионами А13+ иг­рают кислотные дожди. Не следует злоупотреблять содержащими гидроксид алюминия лекарствами: противогеморроидальными, противоартритными, понижающими кислотность желудочного сока. Как буферную добавку гид­роксид алюминия вводят и в некоторые препараты аспирина и в губную по­маду. Среди пищевых продуктов наивысшей концентрацией алюминия обла­дает чай (до 20 мг/кг).

Поступающий в организм человека алюминий в виде нерастворимого фосфата Al + выводится с фекалиями, частично всасывается в кровь и выво­дится почками. При нарушении деятельности почек происходит накаплива­ние алюминия, которое приводит к нарушению метаболизма кальция, маг­ния, фосфора и фтора, сопровождающееся ростом хрупкости костей, разви­тием различных форм анемии. Были обнаружены также и более грозные про­явления токсичности алюминия: нарушения речи, провалы в памяти, нару­шение ориентации и т.п. Все это позволяет приблизить считавшийся до не­давнего времени нетоксичный алюминий к таким супертоксикантам, как свинец, кадмий, ртуть.

Page 3

• В Аргентине наблюдалось хроническое отравление мышьяком, вызванное потреблением воды, содержащей от 1 до 4 мг/л AS2O3. Аналогичная ситуация наблюдалась в Чили. Употребление колодезной воды, содержащей 0,6 мг/л мышьяка, привело к локальным хроническим отравлениям на о. Тайвань.

• В Балтиморе была обнаружена территория, где смертность от рака в 4,3 раза выше, чем в городе в целом. Эта полоса окружает бывшую фабрику, производившую в течение 100 лет мышьяк.

• Трагический случай произошел в Японии в 1955 г., когда отравилось более 12 000 детей. Их кормили молочной смесью, в состав которой входило сухое молоко, загрязненное оксидом мышьяка (III). Он случайно попал в фосфат натрия, которым стабилизировали порошок молока. Фосфат натрия являлся отходом при выделении алюминия из боксита, в котором содержалось существенное количество мышьяка. Более 120 детей погибли от потребления смеси через 33 дня при ежедневной дозе AS2O3 5 мг.

• Существует также версия об отравлении мышьяком Наполеона Бонапарта. С помощью нейтронно-активационного анализа волос Наполеона разных периодов его жизни эксперты установили, что содержание мышьяка в них в 13 раз превышает обычную норму для человеческих волос, а отложения мышьяка в растущих волосах совпадали по времени с периодом пребывания Наполеона на острове Святой Елены.

Мышьяк принадлежит к тем микроэлементам, необходимость которых для жизнедеятельности организма не доказана. Мышьяк широко распростра­нен в окружающей среде. Он встречается в природе в элементном состоянии, а также в больших количествах в виде арсенитов, арсеносульфидов и орга­нических соединений. В морской воде содержится около 5 мкг/л мышьяка, в земной коре — 2 мг/кг.

Токсичность мышьяка зависит от его химического строения. Элемент­ный мышьяк менее токсичен, чем его соединения. Арсениты (соли трехва­лентного мышьяка) более токсичны, чем арсенаты (соли пятивалентного мышьяка). В целом соединения мышьяка можно расположить в порядке снижения токсичности следующим образом: арсины > арсениты > арсенаты > метиларсоновая и диметиларсоновая кислоты.

Очень высокую токсичность проявляет арсин (Ash4) - очень сильный восстановитель, восстанавливающий различные биогенные соединения. Од­на из главных мишеней арсина - гем; он представляет собой яд гемолитиче­ского действия.

Арсениты являются тиоловыми ядами, ингибирующими различные ферменты. Они взаимодействуют с тиоловыми группами белков, цистеина,

липоевой кислоты, глутатиона, кофермента А, присутствующими в организ­ме, нарушая в конечном итоге цикл трикарбоновых кислот. Кроме того, ар-сениты влияют на митоз, синтез и распаривание ДНК, что связано с блоки­рованием ими тиоловых групп ДНК - полимеразы.

Арсенаты играют роль фосфатного аналога, легко проникают в клетки по транспортным системам фосфата и конкурируют с фосфатами в процессе окислительного фосфорилирования в митохондриях (ингибируют цитохром и глицеролоксидазы). Арсенаты нарушают протекание одной из фосфорили-тических реакций - образование АТФ из АДФ, что приводит к прекращению синтеза АТФ.

Неорганические соединения мышьяка более токсичны, чем органиче­ские, накапливающиеся в рыбе. Соединения мышьяка хорошо всасываются в пищеварительном тракте. Выделение их из организма происходит в ос­новном через почки (до 90 %) и пищеварительный канал. Он также может выделяться с грудным молоком и проникать через плацентарный барьер.

По данным ФАО суточное поступление мышьяка в организм взросло­го человека составляет 0,45 мг, т.е. около 0,007 мг/кг массы тела. Значи­тельно увеличивается поступление мышьяка в тех случаях, когда в рационе повышен удельный вес продуктов моря. ДСД мышьяка для взрослого чело­века составляет 0,05 мг/кг массы тела (около 3 мг/сутки).

Ежегодное мировое производство мышьяка составляет приблизитель­но 50 тыс. т в год, увеличиваясь каждые 10 лет на 25 %. Наиболее мощны­ми источниками загрязнения окружающей среды мышьяком являются ат­мосферные выбросы электростанций, металлургических производств, ме­деплавильных заводов и других предприятий цветной металлургии, про­мышленные сточные воды, мышьяксодержащие пестициды. Мышьяк также используется в производстве хлора и щелочей (до 55 % потребляемого промышленностью количества), полупроводников, стекла, красителей. В сельскохозяйственном производстве мышьяк используется в качестве ро-дентицидов, инсектицидов, фунгицидов, древесных консервантов, стерили­затора почвы.

Основными мерами охраны пищевых продуктов от загрязнения этим элементом являются:

- охрана атмосферного воздуха, почвы и водоемов от загрязнения мышьяксодержащими выбросами, промышленными сточными водами и твердыми отходами;

- ограниченное и регламентированное применение мышьяксодержащих пестицидов и жесткий контроль за ним со стороны органов Госсанэпиднадзора;

- контроль за содержанием мышьяка при использовании в сельском хозяйстве нетрадиционных кормовых добавок;

- контроль за возможной примесью мышьяка в реагентах и материалах, применяемых для обработки пищевого сырья при изготовлении продуктов питания и пищевых добавок.

Page 4

О большой опасности загрязнения почвы кадмием свидетельствует массовая интоксикация кадмием жителей бассейна реки Дзинцу в Японии. Цинковый руд­ник загрязнил кадмием реку, воду которой использовали для питья и орошения ри­совых полей и соевых плантаций. Спустя 15...30 лет 150 человек умерли от хрони­ческого отравления кадмием Содержание кадмия в рисе - основном продукте пита­ния - достигало 600... 1 ОООмкг/кг, что явилось причиной заболевания, вошедшего в историю эндемических отравлений тяжелыми металлами под названием итаи-итаи.

В природе кадмий не встречается в свободном виде и не образует спе­цифических руд. Его получают как сопутствующий продукт при рафиниро­вании цинка и меди. В земной коре содержится около 0,05 мг/кг кадмия, в морской воде - 0,3 мкг/л. По своей электронной конфигурации кадмий напо­минает цинк. Он обладает большим сродством к тиоловым группам и заме­щает цинк в некоторых металлферментных комплексах. Кадмий легко обра­зует пары. Кадмий относится к числу сильно ядовитых веществ и не является необходимым элементом для млекопитающих.

В организме человека среднего возраста содержится около 50 мг кад­мия, 1/3 - в почках, остальное количество - в печени, легких и поджелудоч­ной железе. Период полувыведения кадмия из организма составляет 13...40 лет.

Как металлический кадмий, так и его соли оказывают выраженное ток­сическое действие на людей и животных. Механизмы токсичности кадмия заключаются в том, что он ингибирует ДНК-полимеразу, нарушает синтез ДНК (стадию расплетения), разделяет окислительное фосфорилирование в митохондриях печени. Патогенез отравления кадмием включает также взаи­модействие его с высокомолекулярными белками, особенно тиолсодержа-щими ферментами.

Механизм токсического действия кадмия связан с блокадой сульфгид-рильных групп белков; кроме того, он является антагонистом цинка, кобаль­та, селена, ингибирует активность ферментов, содержащих указанные метал­лы. Известна способность кадмия нарушать обмен железа и кальция. Все это может привести к широкому спектру заболеваний: гипертоническая болезнь, анемия, ишемическая болезнь сердца, почечная недостаточность и другие. Отмечены канцерогенный, мутагенный и тератогенный эффекты кадмия.

Желудочно-кишечная абсорбция кадмия для человека составляет 3...8 %. На нее влияет уровень потребления цинка и растворимость солей кадмия. Будучи абсорбированным, кадмий остается в организме, подвергаясь лишь незначительной экскреции. Главные центры накопления - печень и почки. В этих органах 80 % кадмия связано с металлотионеинами. В то же время, биологической функцией металлотионеинов является участие их в го-меостазе необходимых элементов - цинка и меди. Поэтому кадмий, взаимо-

действуя с металлотионеинами, может нарушать гомеостаз биогенных меди и цинка.

Наличие кадмия в тканях вызывает симптомы, связанные с дефицитом меди, цинка и железа. Кальций плазмы крови снижает абсорбцию кадмия в кровь. Содержание кадмия в тканях тем больше, чем меньше количество кальция в пище. Хроническая интоксикация кадмием нарушает минерализа­цию костей и увеличивает концентрацию кальция в печени. Он также блоки­рует синтез витамина D.

Загрязнение окружающей среды кадмием связано с горнорудной, метал­лургической, химической промышленностью, с производством ракетной и атомной техники, полимеров и металлокерамики. В воздух кадмий поступает вместе со свинцом при сжигании топлива на ТЭЦ, с газовыми выбросами предприятий, производящих или использующих кадмий. Загрязнение почвы кадмием происходит при оседании содержащих кадмий аэрозолей из воздуха и дополняется внесением минеральных удобрений: суперфосфата (7,2 мг/кг), фосфата калия (4,7 мг/кг), селитры (0,7 мг/кг). Заметно содержание кадмия и в навозе, где он обнаруживается в результате следующей цепи переходов: воздух — почва — растения - травоядные животные - навоз.

В некоторых странах соли кадмия используются как антигельминтные и антисептические препараты в ветеринарии.

Все это определяет основные пути загрязнения кадмием окружающей среды, а, следовательно, продовольственного сырья и пищевых продуктов. Источником загрязнения кадмием пищевых продуктов растительного проис­хождения являются сточные воды некоторых промышленных предприятий, а также фосфорные удобрения. В районах промышленных выбросов он депо­нируется в почве и растениях. В растения кадмий поступает за счет корнево­го поглощения и через листья. У многих сельскохозяйственных культур вы­явлена чувствительность к кадмию. Под его действием у растений может развиться хлороз, искривления стебля, бурые некротические пятна на листь­ях и т.д. Однако чаще симптомы начинающегося отравления растений этим металлом не проявляются на внешнем виде растения, а только снижается урожайность. Граница чувствительности к кадмию у зерновых и картофеля лежит в пределах 6... 12 мг/кг почвы. При этом по чувствительности к кад­мию сельскохозяйственные растения располагаются в следующем возрас­тающем порядке: томаты, овес, салат, морковь, редис, фасоль, горох и шпи­нат. Больше всего кадмия откладывается в вегетативных органах растений. Так, в листьях моркови, томатов и овса кадмия откладывается в 25 раз боль­ше, чем в плодах и корнях. Содержание кадмия (в мкг/кг) в различных про­дуктах выглядит следующим образом. Растительные продукты: зерновые 28...95, горох 15... 19, фасоль 5... 12, картофель 12...50, капуста 2...26, по­мидоры 10...30, салат 17...23, фрукты 9...42, растительное масло 10...50, са­хар 5...31, грибы 100...500; в продуктах животноводства: молоко - 2,4, тво­рог - 6,0, яйца 23.. .250.

В организм человека кадмий поступает в основном с пищей (примерно 80 %), Экспертами ФАО установлено, что взрослый человек с пищей получа­ет в среднем 30 — 150 мкг/сутки кадмия, причем в Европе - 30...60 мкг, в Япо­нии - 30... 100 мкг, в кадмиевых геохимических районах - около 300 мкг.

Примерно 20 % кадмия поступает в организм человека через легкие из атмосферы и при курении. В одной сигарете содержится 1,5...2,0 мкг Cd.

Количество кадмия, попадающее в организм человека, зависит не только от потребления им содержащих кадмий пищевых продуктов, но и в большой степени от качества его диеты. В частности, достаточное количество железа в крови, по-видимому, тормозит аккумуляцию кадмия. Кроме того, большие дозы витамина D действуют как противоядие при отравлении кадмием.

Большое значение в профилактике интоксикации кадмием имеет пра­вильное питание (включение в рацион белков, богатых серосодержащими аминокислотами, аскорбиновой кислоты, железа, цинка, селена, кальция), контроль за содержанием кадмия (полярографический, атомно-абсорбционный анализы) и исключение из рациона продуктов, богатых кад­мием.

Всемирная организация здравоохранения считает максимально допус­тимой величину поступления кадмия для взрослых людей 500 мкг в неделю, то есть ДСП 70 мкг в сутки, а ДСД 1 мкг/кг массы тела.

Page 5

• В эпоху Ренессанса ртуть в основном ценилась своими медицинскими свойствами, а также использовалась в смеси с другими металлами как средство серебрения зеркал. Для средневековых алхимиков ртуть имела особую ценность и играла важную роль в поисках философского камня – таинственного вещества, которое превращает простые металлы в золото. В XX в. было доказано, что ртуть участвует во многих реакциях как катализатор.

• В 50-х годах в заливе Минамата в Японии районы рыбного промысла из-за промышленных выбросов были загрязнены метилртутъю. Концентрация ртути в рыбе и моллюсках в этом заливе составила свыше 29 мг/кг. При употреблении такой рыбы в организм ежедневно поступало 30 мг Hg и более. Трагедия Минаматы заключается в том, что, несмотря на чрезвычайно высокое содержание метилртути в заливе, меры по предотвращению дальнейшего поступления ртути в его воды не были приняты, и загрязнение продолжалось вплоть до 70-х годов. К февралю 1977 г общее число случаев отравления составило 121, причем 46 со смертельным исходом. Наблюдалось 22 случая врожденного отравления, когда у матерей, потреблявших загрязненную рыбу, рождались младенцы с мозговыми отклонениями: паралич, отставание в развитии, нарушение координации движений (больные напоминали «дышащих деревянных кукол»). Подобная эпидемия, произошедшая также в Японии на реке Агано (префектура Ниигата), привела к 49 случаям отравления, б из которых - со смертельным исходом

• В Финляндии беременным женщинам вовсе не рекомендуется употреблять рыбу в пищу. Шведские специалисты по гигиене продовольствия требовали снизить допустимую концентрацию ртути в рыбе из Балтийского моря до 0,5 или даже 0,2 мг/кг, так как предел, равный 1 мг/кг, ограждает человека только от симптомов острого отравления, но не предохраняет от других тяжелых последствий поражения ртутью (например, генетических повреждений).

Ртуть находит широкое применение в промышленности. Ежегодно в ми­ре получают более 10 тыс. т ртути, которые используют следующим образом: 25 % - для производства электродов при получении хлора и щелочей, 20 % - в электрическом оборудовании, 15 % - при производстве красок, 10 % - для производства ртутных приборов, таких, как термометры, 5 % - в производст­ве зеркал, в агрохимии и 3 % - в качестве ртутной амальгамы при лечении зу­бов, 22 % - при получении детонаторов, катализаторов (например, для произ­водства ацетальдегида и поливинилхлорида), в производстве бумажной пульпы, фармацевтике и косметике, а также в военных целях. Промышлен­ное значение имеют высокотоксичные неорганические соединения ртути, в частности сулема, из которой получают другие ртутные соединения и кото­рая применяется при травлении стали. Органические соединения ртути при-

меняли в качестве фунгицидов при обработке зерна. Однако с тех пор, как стало известно об опасности подобных соединений, во многих странах их использование было запрещено. Кроме 10 тыс. т ртути, добываемых в мире при горнорудных разработках, еще 10 тыс. т металла выделяется в окружаю­щую среду при сгорании угля, нефти и газа, добыче пустой породы и других индустриальных разработках.

Ртуть - один из самых опасных и высокотоксичных элементов, обла­дающий способностью накапливаться в растениях и в организме животных и человека, т. е. является ядом кумулятивного действия. Ртуть - единственный металл, представляющий собой при комнатной температуре жидкость, одна­ко она может существовать в различных физических состояниях и химиче­ских формах. Кроме элементного состояния (Hg°), ртуть образует неоргани­ческие и органические соединения, в которых проявляет степень окисления +1 и +2.

Токсичность ртути зависит от вида ее соединений, которые по-разному всасываются, метаболизируются и выводятся из организма. Из металлорга-нических соединений с точки зрения токсикологии наиболее важными явля­ются алкилртутные соединения с короткой цепью: метил-, этил-, диметил-, пропилртуть. В них связь ртути и углерода является устойчивой, не разруша­ется водой, кислотами и основаниями, что объясняется слабым сродством ртути к кислороду.

Механизм токсического действия ртути связан с ее взаимодействием с сульфгидрильными группами белков. Блокируя их, ртуть изменяет свойства или инактивирует ряд жизненно важных ферментов (гидролитических и окислительных). Ртуть, проникнув в клетку, может включиться в структуру ДНК, что сказывается на наследственности человека. Мозг проявляет особое сродство к метилртути и способен аккумулировать почти в 6 раз больше рту­ти, чем остальные органы. При этом более 95 % Hg в тканях мозга находится в органической форме. В других тканях органические соединения деметили-руются и превращаются в неорганическую ртуть. В эмбрионах ртуть накап­ливается так же, как и в организме матери, но содержание ртути в мозге пло­да может быть выше.

Неорганические соединения ртути нарушают обмен аскорбиновой ки­слоты, пиридоксина, кальция, меди, цинка, селена; органические - обмен белков, цистеина, аскорбиновой кислоты, токоферолов, железа, меди, мар­ганца, селена.

Антагонистами ртути в организме человека являются цинк и, особенно, селен. Предполагают, что защитное действие селена обусловлено деметили-рованием ртути и образованием нетоксичного соединения - селено-ртутного комплекса.

В продуктах ртуть может присутствовать в трех видах: в виде атомарной ртути, а также ее неорганических и органических соединений. Случаи за­грязнения пищевых продуктов металлической ртутью являются очень ред-

кими. Ртуть плохо адсорбируется на продуктах и легко удаляется с их по­верхности.

Ртуть относится к рассеянным в природе элементам; по распростране­нию в земной коре она занимает 62-е место, средняя концентрация составля­ет 0,5 мг/кг). Основным источником поступления ртути в окружающую среду является естественный процесс ее испарения из земной коры и океанов в ко­личестве 25... 125 тыс. тонн ежегодно. Распределение и миграция ртути в ок­ружающей среде осуществляются в виде круговорота двух типов: 1) перенос паров элементной ртути от наземных источников в Мировой океан; 2) цирку­ляция диметилртути, образуемой в процессе жизнедеятельности бактерий. Именно второй тип круговорота, включающий метилирование неорганиче­ской ртути в донных отложениях озер, рек и других водоемов, а также в Ми­ровом океане, является ключевым звеном движения ртути по пищевым путям водных экологических систем, по которым она поступает в организм челове­ка. Процесс биокумуляции ртути может включать следующие звенья: планк­тонные организмы (например, водоросли) — ракообразные — рыбы — птицы. Человек может включаться в такую пищевую цепь на любом этапе; в основ­ном это происходит в результате потребления рыбы. Для человека представ­ляет опасность потребление в пищу некоторых видов рыб, моллюсков. Мясо рыбы отличается наибольшей концентрацией ртути и ее соединений, по­скольку активно аккумулирует их из воды и корма, в который входят различ­ные гидробионты, богатые ртутью. Организм рыб также способен синтезиро­вать метилртуть, которая накапливается в печени. Самое высокое содержа­ние метилртути обнаружено в организме хищных рыб.

Если нехищные пресноводные рыбы могут содержать ртуть в пределах от 78 до 200 мкг/кг, а океанские нехищные рыбы от 300 до 600 мкг/кг, то хищные пресноводные рыбы - от 107 до 509 мкг/кг, а концентрация ртути у хищных океанских рыб достигает очень высоких значений. У некоторых ви­дов рыб в мышцах содержится белок - металлотионеин, который с различ­ными металлами, в том числе и с ртутью, образует комплексные соединения, способствуя тем самым накапливанию ртути в организме и передаче ее по пищевым цепям. У таких рыб содержание ртути достигает 500...20 000 мкг/кг (рыба-сабля) и 5 000... 14 000 мкг/кг (тихоокеанский марлин). Среднее количество ртути в морских рыбах составляет 150 мкг на 1 кг их массы.

В организм человека ртуть поступает в наибольшей степени с рыбопро­дуктами, в которых ее содержание может многократно превышать ПДК. По­этому в Финляндии, например, рекомендуется есть рыбу только 1...2 раза в неделю. Однако отказ от питания рыбой тоже не является надежной защитой от поступления в организм ртути, поскольку рыбную муку используют в ка­честве кормовой добавки для домашних животных. Растительные продукты также могут быть источником ртути, если выращиваются на загрязненных почвах или обрабатываются ртутьсодержащими пестицидами.

В основных пищевых продуктах содержание ртути обычно не превыша­ет 60 мкг на 1 кг продукта и составляет (мкг/кг): в продуктах животноводст­ва: мясо 6...20, печень 20...35, почки 20...70, молоко 2... 12, сливочное масло 2...5, яйца 2... 15; в съедобных частях сельскохозяйственных растений: ово­щи 3...59, фрукты 10... 124, бобовые 8... 16, зерновые 10... 103; в шляпочных грибах 6.. .447, в перезрелых до 2 000 мкг/кг, причем в отличие от растений, в грибах может синтезироваться метилртуть. При варке рыбы и мяса концен­трация ртути в них снижается, при аналогичной обработке грибов остается неизменной. Это различие объясняется тем, что в грибах ртуть связана с аминогруппами азотсодержащих соединений, в рыбе и мясе - с серосодер­жащими аминокислотами.

В организме взрослого человека содержится около 13 мг ртути, причем около 70 % - в жировой и мышечной ткани. Период полувыведения метил-ртути из организма человека (полупериод биологического распада соедине­ний ртути) составляет около 70 дней. Однако процесс выведения ртути зави­сит от особенностей организма и может достигать 190 дней.

По рекомендациям ФАО/ВОЗ человек может получать с суточным ра­ционом около 0,05 мг ртути. Безопасным уровнем содержания ртути в крови считают 50-100 мкг/л.

Высокая токсичность ртути обусловливает очень низкие значения ПДК: 0,0003 мг/м3 в воздухе и 0,0005 мг/л в воде.

studopedia.su

Сравнение алюминия и меди в качестве проводников

Такие металлы как алюминий и медь применяются в электропроводке гораздо чаще других металлов, поскольку являются очень хорошими и недорогими проводниками.

Но какой же конкретно материал (медь или алюминий) лучше по своим проводящим свойствам. В данной статье мы попытаемся выяснить это.

Начнем сперва с физического описания этих материалов. Медь представляет собой мягкий и ковкий металл с ярким золотисто-коричневым оттенком. Алюминий представляет собой серебристый металл, который легче и прочнее меди.

Теперь поговорим о проводимости этих материалов. Эти два металла близки по шкале проводимости, причем медь имеет более желательную характеристику. Проводимость меди составляет около 0.6 МОм/см, а алюминия – около 0.4 МОм/см.

Что же касается сопротивления проводника? Провод длиной в один метр с поперечным сечением в один квадратный миллиметр имеет сопротивление 1.7 миллиома (0,0017 Ом), если он сделан из меди, и 2.5 миллиома (0,0025 Ом), если это алюминиевый провод.

Каково же их использование в проводке? Благодаря отличным электрическим свойствам медь широко используется для электропроводки. При распределении электроэнергии иногда вместо меди используется алюминий. Впрочем, цена на алюминий несколько выше и составляет примерно одну треть от стоимости меди.

У алюминия в составе проводов есть еще один немаловажный недостаток. Алюминий когда-то очень широко использовался в домашней электропроводке, но он легко коррозировал, что могло привести к высокому сопротивлению и накоплению тепла в точках соединения. Из-за этой опасности в 1970-х годах использование алюминиевой проволоки было ограничено. Поэтому медь на сегодняшний день в электропроводке можно увидеть гораздо чаще.

© digitrode.ru

Теги: провода

digitrode.ru

Алюминий в электротехнике

Так сложилось много лет назад, что большинство инженеров, конструкторов и проектировщиков в электротехнической промышленности считают медь и сталь практически единственными материалами, с которыми можно работать. Это связывают, в частности, с тем, что в конце 19-го века, когда зарождалась электрическая промышленность, доступного алюминия практически еще не было.

В настоящее время ситуация совершено другая: алюминия в мире производят где-то в два раза больше чем меди и объемы производства алюминия уступают только объемам производства стали.

В последние годы цены на сталь и медь растут значительно быстрее, чем цены на алюминий. В результате некоторые потребители, которые традиционно  применяли медь, переходят на алюминий. Однако сравнение физических и экономических  характеристик этих металлов «кричит» о том, что замен стали и меди на алюминий должно быть намного больше. Поэтому не удивительно, что применение алюминия в электротехнической отрасли неуклонно возрастает.

Свойства материала как электрического проводника

Для инженера-электрика наиболее важными свойствами и характеристиками материалов являются:

  • плотность,
  • электрическая проводимость,
  • прочность,
  • термическое расширение и
  • коррозионная стойкость.

Сравнение алюминия, стали и меди         

Плотность (г/см3): Алюминий 1350: 2,70 Сталь: 7,86

Медь (отожженная): 8,93

Объемная проводимость (% IACS): Алюминий 1350: 61 Сталь: 8

Медь (отожженная): 100

Удельная проводимость (на единицу массы): Алюминий 1350: 100 % Сталь: 4 %

Медь (отожженная): 50 %

Предел прочности (МПа): Алюминий 1350: 125 Сталь: 300

Медь (отожженная): 235

Предел текучести (МПа): Алюминий 1350: 110 Сталь: 170

Медь (отожженная): 104

Линейное термическое расширение (10-6 м/м·°С): Алюминий 1350: 22 Сталь: 13

Медь (отожженная): 17

Электрические свойства

Отожженная медь имеет проводимость 100 % IACS. Сокращение IACS – обозначает «Международный стандарт по отожженной меди» —  сравнительная единица измерения электрической проводимости. Алюминий 1350-Н116 (АД0Е по ГОСТ 4784-97) имеет проводимость 61 % IACS, то есть эквивалентная меди проводимость будет достигаться при большем поперечном сечении алюминия. Однако поскольку алюминий намного легче меди этот увеличенный алюминиевый проводник будет весить в два раза меньше чем медный (8,93/2,70×0,61=2,02). В результате один килограмм алюминия будет обеспечивать ту же проводимость что и два килограмма меди. Поэтому, когда нет жестких ограничений по размерам проводника, для токопроводящих шин, кабелей и проводов вместо меди все чаще применяют алюминий.

Прочность

При одинаковых сечениях и медь, и сталь, конечно, прочнее алюминия. Однако прочность алюминия можно увеличить легированием и термомеханической обработкой, а также увеличить его толщину. Кроме того, поскольку технология прессования алюминия позволяет получать в отличие, например, от стали, поперечные сечения очень сложной формы. Поэтому алюминиевый элемент может быть сконструирован таким образом, чтобы конструкционно быть более эффективным, чем стальные элементы.

Сопротивление коррозии

В отличие от стали поверхность алюминия не нужно красить или покрывать, например, цинком, а потом следить, чтобы она не заржавела. Естественный слой оксида алюминия изолирует металл от дальнейшего контакта с воздухом и предотвращает дальнейшее окисление. При малейшем повреждении этого слоя он мгновенно сам восстанавливается.

Заблуждения и мифы

Алюминиевые проводники являются достаточно надежными. Все провода линий электропередач – алюминиевые. Они имеют многолетнюю репутацию надежной службы.

Однако еще в 60-70-е годы прошлого века сложилось мнение о проблемах  с алюминиевой проводкой в жилых домах и квартирах, в частности, возможном перегреве их соединений. Тщательные исследования этого вопроса, например, в Канаде, показали, что алюминиевые провода не являются в этом смысле какими-то особенными: при неправильном обращении перегреваться могут любые провода. Более того, в сотнях тысяч домов и квартир по всему миру алюминиевые провода продолжают работать. Другое дело, в 60-70-е годы никто не предполагал, что дома и квартиры будут так «напичканы» электрическим приборами: сечения алюминиевых проводов можно было заложить и потолще.

Алюминиевые профили в электротехнике  

Уличные и шоссейные осветительные столбы

Алюминиевые прессованные столбы имеют преимущества перед, например, стальными столбами, за счет их меньшего веса, меньшего соотношения прочность-вес, хорошего внешнего вида, долговременной коррозионной стойкости, низкой стоимости обслуживания, а также большей безопасности, особенно при применении специальных безопасных оснований. Когда на такой столб наезжает на большой скорости автомобиль, это основание разрушается и позволяет столбу двигаться вместе с автомобилем. Это снижает мощность удара по автомобилю и степень повреждений водителя и пассажиров. Это основание так «хитро» спроектировано, что оно разрушается от удара об столб, но выдерживает воздействующие на столб ветровые нагрузки.

Токопроводящие шины

Для всех типов шин применяют прессованный алюминий там, где это позволяет место для их размещения, так как они, в первую очередь, намного дешевле, а также их намного легче гнуть (рисунок 1). Рисунок 1

Кабельные наконечники и гильзы

Кабельные наконечники и гильзы из прессованных алюминиевых труб имеют преимущества над аналогами из стали или пластика по прочности, проводимости, стоимости, коррозионной стойкости и легкости механической обработки (рисунок 2). Рисунок 2

Каналы для прокладки кабелей

Каналы для прокладки кабелей все чаще применяют из прессованного алюминия, а не из стали или пластика, так как они обеспечивают достаточную прочность, имеют малый вес, обладают высокой коррозионной стойкостью, являются немагнитными и огнестойкими (рисунок 3). Рисунок 3

Шкафы электрических подстанций

Алюминиевые профили предпочтительнее, например, оцинкованной стали, за счет минимального технического обслуживания, прочности, коррозионной стойкости, малого веса (особенно при монтаже в полевых условиях и на высоте). Алюминиевые профили и листы легко подрезать и сверлить прямо «по месту», а главное, их не надо красить для защиты от коррозии.

Распределительные траверсы электрических столбов

Распределительные траверсы электрических столбов (те, которые горизонтальные) из прессованного алюминия обеспечивают необходимую прочность, но при этом мало весят и не требуют никакого технического обслуживания.

Радиаторы-гребенки

Прессованные алюминиевые пластинчатые радиаторы для рассеивания тепла («гребенки») весьма эффективны за счет высокой теплопроводности, малого веса, низкой стоимости. Главное преимущество алюминия — способность прессоваться во много  очень тонких ребер (рисунок 4). Рисунок 4

Коаксильный кабель 

Наружный проводник коаксильного телевизионного кабеля чаще всего выполняют не из медной трубы, а из более дешевой алюминиевой. Технология изготовления такого кабеля представлена на рисунке 5.

Рисунок 5

Источник: P. Pollak, ET 2008.

aluminium-guide.ru

В чем разница между алюминиевыми и медными материалами в электроустановках?

Да, безусловно, между медью и алюминием существует много различий при применении их в электроустановках, таких как проводимость, вес, и, один из самых важных факторов – стоимость. В прошлом веке алюминий был более распространённым металлом для выполнения таких электротехнических изделий как предохранители, шины, автоматические выключатели, использовался для прокладки внутренних сетей в жилых и промышленных зданиях. Под влиянием современных тенденций многие проектировщики активно заменяли в своих изделиях алюминий на медь, однако в последнее время тенденции снова меняются, и от меди переходят снова к алюминию. Вина этому переходу – высокая стоимость меди.

Материалы

Очень часто заблуждения по поводу меди и алюминия возникают из-за использования различных марок металлов, используемых в электроустановках. В проводах, шинах и другом электрооборудовании используют чистую медь. Чистый алюминий слабо подходит для использования в электроустановках, тут медь имеет большое преимущество. Однако, необходимо учитывать и то, что металлургическая промышленность эволюционирует и создает новые сплавы различных металлов.

Соответственно различные свойства алюминия (Al) также могут изменятся – все зависит от обработки. Например, Al 6101 прочнее, чем Al 1350. Тем не менее, после термообработки Al 6101 затвердевает и прочность его повышается. Различные виды металлов, например Al 6101 и Al 1350, могут иметь различные свойства в сравнении с чистой медью (Cu). Поэтому в процессе проектирования очень важно знать свойства материала для конкретного использования.

Свойства проводников

Масса, сечение, стоимость – три основных фактора при выборе материала проводника. Однако нужно учитывать и другие факторы. Например, факторы нагрева – как изменится проводимость при нагреве, насколько расширится металл и другие. Как известно, при нагреве металлы расширяются, соответственно, если этот фактор не учесть, можно получить деформацию точек контактов. Это свойство особенно актуально при использовании алюминия или его сплавов, так как его коэффициент теплового расширения, в зависимости от сплава, примерно на 42% больше, чем у меди. Но также стоит отметить и то, что коэффициент теплоотдачи у алюминия больше чем у меди.

Решения нашли довольно простое – увеличили поверхность алюминиевых шин, что, в свою очередь, увеличило теплоотдачу, и при нагреве шины не деформировались. При проектировании, независимо от типа проводящего материала, необходимо особое внимание уделить надежным соединениям проводников. Это необходимо для предотвращения ухудшения качества контактов с течением времени, а также предотвратить деформацию при тепловом расширении и ползучести.

Распространенным заблуждением является то, что алюминий мягкий и должен использовать специальные разъемы для сжатия при монтаже.  Алюминий может нуждаться в специальном покрытии для уменьшения окисления. Это связано с тем, что окисления может оказывать существенное влияние на качество проводимости материала даже в случае соединения Al – Al. Для предотвращения процесса окисления часто покрывают проводники (это касается и меди и алюминия) оловом или серебром, так как эти материалы имеют хорошую проводимость и не склонны к окислению при атмосферных воздействиях.

Достаточно проблем может принести и коррозия, которая возникает при использовании разнородных металлов в одной системе. Al электрохимически реагирует с медью при повышенной влажности (влага действует как электролит). Проводники из меди и алюминия с кабельными наконечниками располагаются в разъемы, которые после свариваются трением и капсулируются  для предотвращения коррозионных процессов в соединении  Al – Cu. Правильное соединение позволяет максимально избежать коррозионных процессов. Al и медь совместимые металлы, однако не стоит забывать то, что при неправильном их соединении могут возникать коррозионные процессы.

Вес и электрическая проводимость

Пожалуй, не последним фактором при выборе между алюминиевыми и медными проводниками является их электрическая проводимость. Да, безусловно, медь имеет лучшую проводимость на единицу объема, но алюминий легче, и это его большой плюс.  По словам Уве Шенка, менеджера Helukabel – «Необработанный Al примерно на 70% легче Cu. А алюминиевые шины и кабели примерно на 60% легче, чем медные».

Однако главным показателем все же является проводимость. Al марки Al6101 имеет практически половинную проводимость Cu (56%). Различие в соотношениях массы и электрической проводимости выглядит примерно так, на один фунт Al приходится приблизительно 1,85 фунта Cu. Например, сборка медных шин весит 550 фунтов, а алюминиевых 300 фунтов. Такое различие в весе может помочь сэкономить не только на материалах, но и на транспортировке и даже погрузке-разгрузке.

Применение меди и алюминия в различных электроустановках

Алюминий в электроустановках

Практически во всем мире применяется в линиях электропередач ЛЭП и распределительных устройствах. Это вызвано меньшим весом и ценой по сравнению с Cu, что позволяет уменьшать количество опор высоковольтных линий при передаче электрической энергии на значительные расстояния.

В осветительных установках и различных соединителях ранее использовались латунные контакты. Сейчас они активно заменяются алюминиевыми контактами.

Медь в электроустановках

Очень распространена в коммуникационных электроустановках – тут главный ее плюс гибкость, так как позволяет легко вести монтаж на сложных участках и при этом не ломается.

Электрические двигатели и трансформаторы – вызвано тем, что данные устройства должны иметь минимальные габариты и максимальную производительность, а так как проводимость и гибкость меди намного лучше алюминия практически все производители электродвигателей и трансформаторов используют ее в своих изделиях.

Обоюдное применение меди и алюминия

Оба материала могут активно применятся при монтаже проводки в зданиях. В прошлом веке все внутренние сети выполняли алюминиевыми проводами. Это позволяло существенно экономить, так как длина проводки могла достигать нескольких километров. В современных жилых домах для монтажа проводки используют медь. Ее плюсы тоже очевидны – лучше проводимость (меньшее сечение) и лучшая эластичность.

У многих сложился стереотип, что алюминиевые кабели и шины это плохо. Но при правильном их применении можно сэкономить средства и получить хорошую проводимость.

Такие электротехнические устройства как электрические шины, трансформаторы,  электрические кабели также используют оба материала.

elenergi.ru

Медь или алюминий - что выгоднее?

Только два металла - медь и алюминий нашли широкое применение в качестве проводников электрического тока. Их использование в этом качестве обусловливается комплексом физических свойств самих металлов и их ценой.

Физические основы протекания электрического тока в проводниках

Как известно из физики, электрический ток – это упорядоченное движение электрических зарядов в проводнике, под действием сил электрического поля. При перемещении электрических зарядов в проводнике они подвергаются противодействию, которое оценивают величиной электрического сопротивления и которое измеряется в омах (Ом).

Электрическое сопротивление для цилиндрических проводников определяется формулой r=ρ*l/s,  где r - электрическое сопротивление проводника, Ом, ρ - удельное электрическое сопротивление материала проводника, Ом*мм2/м, l - длина проводника, м, s - площадь поперечного сечения проводника, мм2

Поэтому, в электротехнике, для изготовления проводов используются материалы с низким удельным сопротивлением (медь, алюминий, сталь).

Например: Удельное сопротивление меди - 0, 0175 ом*мм2/м, удельное сопротивление алюминия - 0, 0294 ом*мм2/м

Иногда вместо электрического сопротивления r употребляют обратную величину – проводимость g=1/r, а вместо удельного сопротивления - удельную проводимость γ=1/ρ. Электрическая проводимость измеряется в сименсах (См).

При перемещении электрических зарядов в проводнике, электрическое сопротивление вызывает нагревание проводника. Это нагревание является вредным и, при эксплуатации проводника, должно быть ограничено, с учётом физических свойств проводника и класса изоляции.

Установившаяся температура проводника с током, зависит от плотности тока, которая определяется по формуле: δ=I/s, где δ  - плотность тока, а/мм2, I — величина тока, а s — площадь поперечного сечения проводника, мм2

Что же выгоднее применять в качестве электрических проводов — медь или алюминий?

При сравнительном рассмотрении тенденций роста стоимости алюминия и меди в течение ХХ и начала ХХI веков, очевидно, что стоимость алюминия растёт медленнее, чем меди. Эта разница особенно видна в начале ХХI века. С 2006 года стоимость меди на Лондонской бирже металлов доходила до 8500 долл/тонну, в то время как алюминия — 2500 долл/тонну. Это связано с усовершенствованием и увеличением производства алюминия, при доступном и недорогом сырье для производства кабельной продукции, которое, в стоимости конечного продукта, составляет 25%.

Для меди - ситуация иная. Медные рудные запасы ухудшаются, содержание меди руде падает, новые месторождения бедны металлом и сложнее в его извлечении. Кроме того, эти месторождения географически более труднодоступны. Поэтому, затраты на сырьё в стоимости конечного продукта, составляют более 50 % и ещё растут.

Эти тенденции не изменяются, так же, как и сравнительная динамика цен, а изменения не предвидятся. Всё это говорит в пользу использования алюминия.

Научное открытие сверхпроводимости и её промышленное применение пока ещё недостижимы для мировой практики. В свете того, что электрическая проводимость алюминия ниже, чем у меди, сечение алюминиевого провода и, следовательно его объём, должны быть больше чем у медного, причём диаметр алюминиевого провода, для той же плотности тока, должен быть больше чем медного на 25 %.

Однако, увеличение объёма, а следовательно массы алюминиевого провода, нивелируется невысокой плотностью металла (2,7 т/м3 — алюминий, 8,9 т/м3 — медь). Поэтому масса алюминиевого провода, для той же плотности тока, в три раза меньше чем медного.

Однако выигрыша по массе, при применении алюминиевого провода вместо медного, из-за требований СНИПа, нет. Например, масса меди в проложенных проводах и кабелях, в панелях современной трёхкомнатной квартиры, составляет 10 кг. Масса трехжильного кабеля длиной в 1000 метров кабеля ВВГ (медь) сечением 1,5 мм2 составляет 93 кг, а масса эквивалентного ему кабеля АВВГ (алюминий) сечением 2,5 мм2 составляет 101 кг. Выгода от применения алюминиевых проводов получается из-за гораздо меньших цен на алюминий.

При существующих на сегодня ценах, применение алюминиевых проводов в несколько раз выгоднее, чем медных!

Для высоковольтных линий и для подвесных кабельных систем алюминий используется уже давно. Но в изолированных проводах увеличение диаметра жилы требует увеличения расхода кабельного ПВХ пластиката, цена которого (1800 долл/тонну) приближается к цене алюминия. Чем тоньше жила провода, тем больше сравнительные затраты на электроизоляцию, а выгоды от перехода с меди на алюминий – ниже. Однако, при текущих ценах, экономия всё равно получается значительной!

Проектировщики, архитекторы, электрики должны преодолеть предвзятость по отношению к применению алюминиевых проводов при новом строительстве. Это позволит применять выгодный, но трудоёмкий алюминий при разводках в панелях и в подводах к точкам внешней нагрузки (розетки и выключатели), что даст значительную экономию.

Алюминиевые обмоточные провода, могут с заметной выгодой, применяться в производстве маломощных трансформаторов, электродвигателей и других электрических машин.

Всё это определит огромный спрос на алюминий на мировом рынке и использование «крылатого металла» на земле.

А что вы думаете по этому поводу? Оставьте свой  комментарий к статье!

Яков Кузнецов

electrik.info

Какая проводка лучше медная или алюминиевая

21.03.2017

Что лучше — медная или алюминиевая проводка? Этот вопрос часто поднимается в среде специалистов и обычных людей, планирующих поменять старые провода в доме, квартире или офисе. Но чтобы принять правильное решение, важно знать преимущества и недостатки, правила эксплуатации, а также основные отличия между медной и алюминиевой коммутацией.

Плюсы и минусы

Алюминиевая проводка имеет следующие преимущества:

  • Небольшая масса. Эта особенность важна при монтаже линий электропередач, длина которых может достигать десятков, а то и сотен километров.
  • Доступность по цене. При выборе материала для проводки многие ориентируются на стоимость металла. Алюминий имеет меньшую соответственно, что объясняет более низкую цену изделий из этого металла.
  • Стойкость к окислительным процессам (актуальна при отсутствии контакта с открытым воздухом).
  • Наличие защитной пленки. В процессе эксплуатации на проводке из алюминия формируется тонкий налет, уберегающий металл от окислительных процессов.

Алюминий имеет и ряд недостатков, о которых необходимо знать:

  • Высокое удельное сопротивление металла и склонность к нагреву. По этой причине не допускается применение провода меньше 16 кв.мм (с учетом требований ПУЭ, 7-я редакция).
  • Ослабление контактных соединений из-за частых нагревов при прохождении большой нагрузки и последующего остывания.
  • Пленка, которая появляется на алюминиевом проводе при контакте с воздухом, имеет плохую проводимость тока, что создает дополнительные проблемы в местах соединения кабельной продукции
  • Хрупкость. Алюминиевые провода легко переламываются, что особенно актуально при частом перегреве металла. На практике ресурс алюминиевой проводки не превышает 30 лет, после чего ее необходимо менять.

Правила соединения меди и алюминия

Бывают ситуации, когда требуется заменить только часть проводки или добавить (перенести) несколько розеток в квартире. В такой ситуации возникает вопрос, как правильно соединить провода, выполненные из различного металла. Чтобы избежать повышенного прогрева в местах объединения медной и алюминиевой проводки, стоит использовать следующие способы коммутации:

  • Соединение типа «орешек». В этом варианте провода зажимаются между специальными пластинами (всего их три). Сначала откручиваются пластины сверху и снизу, после чего между средним и верхним зажимом вставляется провод. На последнем этапе происходит затяжка изделия. Такая же манипуляция проделывается с другой стороны.
  • Соединение с помощью болта. Такое крепление похоже на «орех» с той лишь разницей, что два провода объединяются и насаживаются на один болт с установкой шайбы между ними. Далее фиксация производится с помощью гайки.
  • Пружинные клеммы. Если проводка меняется полностью, лучше использовать клеммники типа WAGO. Их особенность заключается в легкости монтажа и удобстве крепления проводов, благодаря пружинному типу зажимов. Перед применением таких клемм важно предварительно зачистить кабель на расстоянии 13-15 мм по краям. После этого провод вставляется в отверстие и крепится небольшими рычагами. В средней части клемм предусмотрена специальная смазка, предотвращающая окисление металлов. Применение пружинных клемм допустимо только в осветительной сети. Протекание большой нагрузки приводит к нагреву пружин клеммника, ухудшению качества контакта и, соответственно, снижению проводимости.
  • Клеммные колодки — один из лучших вариантов для объединения проводов из меди или алюминия. Изделие представляет собой планку из диэлектрического материала с металлической планкой и клеммниками для зажима. При монтаже требуется зачистить края кабеля, вставить его в отверстия и хорошо прожать.

Рассмотренные способы соединения могут применяться для объединения проводов, выполненных из различных металлов (не только меди и алюминия). Такое исполнение гарантирует высокий уровень безопасности и возможность ухода от потенциально опасного скручивания. Но стоит помнить о важности периодической проверки и протяжки болтовых соединений и клеммников, ведь они имеют свойство ослабляться.

Какой материал для проводки лучше?

Теперь разберемся более подробно, какой провод лучше медный или алюминиевый. В этом отношении появилось множество стереотипов и заблуждений, о которых поговорим ниже:

  • Долговечность. Считается что срок жизни медного провода больше, чем алюминиевого. Это ошибочное мнение. Если заглянуть в специальный справочник, можно убедиться, что ресурс кабелей из обоих видов металла идентичен. Для изделий с одинарной изоляцией он составляет 15 лет, а с двойной — 30.
  • Склонность к окислению. Применяя кабель из алюминия, стоит помнить о его склонности к окислительным процессам. Еще в школе нам рассказывали что Al (алюминий) — металл, который активно взаимодействует с кислородом, из-за чего на его поверхности появляется тонкая пленка. Последняя защищает металл от дальнейшего распада, но ухудшает его проводимость. Если изолировать провод от окружающей среды, риск окислительных процессов сводится к минимуму. Оптимальный вариант — применение специальных клеммников с токопроводящей пастой. Особенность последней заключается в улучшении качества контактного соединения между двумя проводами и снятие пленки окисла с металла. Кроме того, специальная смазка исключает контакт алюминия с окружающим воздухом.
  • Прочность. Медная проводка считается более прочной и способна выдерживать многоразовые сгибания. В ГОСТе прописано, что провод, выполненный из меди, должен выдержать 80 перегибов, а из алюминия — 12. Если проводка проходит в стене, полу или спрятана под потолком, такая особенность не так важна.
  • Стоимость. Цена провода из алюминия ниже в 3-4 раза. Но при выборе важно помнить, что медный провод сечением 2,5 кв.мм рассчитан на ток 27 Ампер. Если отдавать предпочтение алюминиевой проводке, толщина провода должна составлять 4 кв. мм (номинальный ток 28 Ампер).
  • Сопротивление. Определяясь, что выбрать — алюминиевые или медные провода, стоит учесть разное удельное сопротивление. Для меди этот параметр составляет около 0,018 Ом*кв.мм/м, а для алюминия — 0,028. Но стоит учесть, что общее сопротивление (R) проводника зависит не только от упомянутого параметра, но и от длины и площади проводника. Если учесть, что для той же нагрузки применяются алюминиевые провода большего сечения, итоговое R изделий из меди и алюминия будет приблизительно идентичным. Наибольшее сопротивление возникает в местах соединения, но при следовании рассмотренным выше советам этого можно не бояться.
  • Легкость монтажа. Считается, что соединение проводов из алюминия — более сложная задача. Это актуально лишь при обычном объединении проводки, путем скрутки. В случае применения оконцевателей, клеммников или болтов такая проблема отпадает.

Отдельного внимания заслуживает ситуация, подразумевающая контакт двух различных металлов. При объединении меди и алюминия в месте контакта происходят различные процессы, из-за протекания которых увеличивается сопротивление. В результате место стыка двух проводов перегревается, изоляция разрушается и возрастает риск воспламенения.

Рассмотренная выше особенность характерна для всех металлов, имеющих различное удельное сопротивление. Кроме того, многие производители используют не «чистые» металлы, а их сплавы, что также приводит к изменению параметра сопротивления. Чтобы избежать проблем в будущем, лучше правильно соединять провода и отказаться от их скручивания.

Полезные рекомендации

В завершение приведем несколько советов, которые должны быть учтены при организации проводки:

  1. В случае самостоятельного проектирования проводки в доме или квартире, лучше выбирать медные провода. При меньшем сечении они выдерживают большее токи и более стойки к частым сгибаниям. Не менее важный момент — объем. Медные провода компактны, что упрощает процесс создания штробы. Например, при подключении приемника мощностью 7-8 кВт алюминиевый провод должен иметь сечение около 8 мм. В кабеле три жилы и плюс оплетка. В итоге общий диаметр составляет около 1,5 сантиметров. Для сравнения медь может иметь сечение 4 кв.мм, а общий диаметр — не более сантиметра.
  2. При установке розетки должен использоваться трехжильный кабель, с заземляющим проводом. Расстояние розетки от пола — 30 см. При организации осветительной цепи допускается применение кабелей с двумя жилами (заземление здесь не нужно).
  3. Запрещено вешать всю нагрузку на одну пару проводов (тем более, если они алюминиевые). Оптимальный вариант — разделение цепи на несколько линий. Например, через один автомат питается ванная, через другой — освещение, через третий — кухня и так далее. Сечение провода для кухни и ванной должно быть 4 или 6 кв.мм, а для цепи освещения — 1,5 или 2,5 мм.

Сложнее всего обстоят дела в старых квартирах, где смонтированы алюминиевые провода, которые отжили свой ресурс и требует замены. Проводка сечением 2,5 кв.мм выдерживают нагрузку не более 20 Ампер, чего недостаточно для современных электроприемников. Кроме того, изоляция проводов со временем теряет эластичность и постепенно разрушается. В такой ситуации единственным решением является полная замена проводки на медные провода.

Подробнее, почему стоит заменить алюминиевую проводку на медную в старом доме, смотрите в этом видео:

Итоги

Какой же провод лучше? С позиции эксплуатационных качеств более предпочтительной является медь. Если исходить из стоимости, алюминиевые провода обходятся дешевле. И здесь важно принять решение — экономить на своей безопасности или нет.

yaelectrik.ru

Разница между алюминием и медью

Чем отличается алюминий от меди? Проще сказать, что у них общего. А общего только то, что оба эти химических элемента являются металлами (со всеми присущими металлам свойствами) и хорошими проводниками. По другим параметрам – плотности, стоимости, распространению в природе и «стажу» использования человеком – у них больше различий.

Содержание статьи

Медь – один из первых металлов, которые человечество научилось добывать и эксплуатировать; по мнению археологов, примерно одновременно с медью люди стали использовать золото. Дело в том, что оба эти металла встречаются в природе в самородном виде, и куску меди для применения его в качестве орудия труда или оружия надо было просто придать после нагрева нужную форму. Это случилось, скорее всего, 6-7 тысяч лет назад. Постепенно люди научились выплавлять металл из руды, и шлак, свидетельствующий о наличии медной металлургии, находят при раскопках древнего поселения Чатал-Хююк в Турции. Первоначально делали оружие и сельскохозяйственные орудия из чистого металла, но со временем люди обнаружили, что в соединении с оловом из меди получается куда более прочная бронза.

Отличие алюминия от меди в том, что дата его первого получения четко зафиксирована в истории. Это случилось в 1825 году в Дании и «отцом» алюминия стал химик Ганс Эрстед. Алюминий в природе в самородном виде не встречается, а при взаимодействии с кислородом образует стойкое соединение, поэтому его производство вначале было делом очень дорогим. Первый алюминий стоил дороже золота, а великому русскому химику Дмитрию Менделееву в знак признания его заслуг перед человечеством в 1889 году британцы подарили весы именно из золота и алюминия.

к содержанию ↑

Сравнение

Электропроводность меди в полтора раза выше, чем у алюминия, но при этом плотность алюминия в 3,3 раза меньше, чем у меди. О цене и говорить не приходится – после освоения промышленной технологии производства алюминия его стоимость очень сильно упала и сейчас она значительно меньше, чем у меди. Эти обстоятельства и предопределили использование алюминия для выпуска многожильных проводов и кабелей. Обратите внимание, когда увидите ЛЭП высокого напряжения: все провода выполнены именно из алюминия. Так и дешевле, и нагрузка на опоры гораздо ниже. Ну а что электропроводность меньше – с этим приходится мириться.

Используется медь и для производства бронзы. В древности из нее изготавливали холодное оружие и орудия труда, пока не была освоена выплавка железа. Но и позже из бронзы лили пушки, причем это продолжалось довольно долго, вплоть до 19 века. Из бронзы отлиты Царь-пушка и Царь-колокол. Кроме этого, медь благодаря высокой коррозионной стойкости нашла применение при изготовлении труб для транспортировки различных жидкостей и газов, а также в некоторых других отраслях промышленности.

Алюминий называют «крылатым металлом». Это название говорит о второй масштабной области его применения (после электротехнической). При соединении алюминия (95,6 %) и меди (4,4 %) получают сплав, который называется дюралюминий, или дюраль. Обладая плотностью, близкой к плотности алюминия, он имеет значительно более высокие прочностные характеристики, поэтому широко используется для производства самолетов.

к содержанию ↑

Таблица

В чем разница между алюминием и медью, видно из приведенной ниже таблицы.

МедьАлюминий
«Стаж» использования человеком6-7 тысяч летС 1825 года
Основные области примененияЭлектротехника, производство качественных труб, некоторые другие отрасли промышленностиЭлектротехника, авиастроение, создание легких несущих конструкций (сплавы), пищевая промышленность, другие отрасли
Плотность8,92 г/см32,6989 г/см3
Электропроводность (при 20 °С)59500000 см/м38000000 см/м
Температура плавления+1356 °С+660 °С

thedifference.ru


Смотрите также