Изготовление дверей

Алидада в геодезии это


Алидада

Абрис - Схематически составленный чертеж местности, отображающий объекты, необходимые для составления топографического плана или профиля.

Аэрофотосъемка - Фотографирование (во всех диапазонах оптического спектра) местности с летательного аппарата. Различают плановую и перспективную аэрофотосъемку. Материалы аэрофотосъемки используются при геодезических, геологических исследованиях, инженерных изысканиях и др. В нашей компании мы выполняем данную работу с помощью беспилотных летательных аппаратов http://tochno-rostov.ru/topograficheskaya-semka/ortofotoplan/

Астролябия - Угломерный прибор, служивший для измерения горизонтальных углов и определения широт и долгот в астрономии.

Абсолютная высота точки земной поверхности (альтитуда) - Расстояние (обычно в метрах) по вертикали от этой точки до среднего уровня поверхности океана. В Российской Федерации исчисляется от нуля футштока в Кронштадте.

Автоколлиматор - Оптический прибор для точных угловых измерений, контроля прямолинейности и параллельности плоскостей, использующий принцип автоколлимации. Используется в электронных теодолитах, тахеометрах.

Альманах навигационных спутников - Набор справочных сведений о положении (о шкале времени и элементах орбит) и рабочем состоянии всех НС данной ГНСС, входящих в информацию передаваемую со спутника.

Альтиметр - Прибор, измеряющий атмосферное давление для определения абсолютных и относительных высот. 

Азимут - Угол между направлением на север и направлением на какой-либо заданный предмет. Азимут обычно отсчитывается в направлении видимого движения небесной сферы (по часовой стрелке на картах)

Атлас - Систематическое собрание карт с пояснительным текстом, изданное в виде тома или набора отдельных листов (например, географический атлас, астрономический атлас).

Автоматизированная картография - Раздел картографии, охватывающий теорию, методологию и практику создания, обновления и использования карт, атласов и других пространственно-временных картографических произведений в графической, цифровой и электронной формах с помощью автоматических картографических систем и прочих технических и аппаратно-программных средств.

Азимутальные проекции - Картографические проекции, параллели нормальной сетки которых — концентрические окружности, а меридианы — их радиусы, расходящиеся из общего центра параллелей под углами, равными разности долгот. Нормальные азимутальные проекции применяются для карт полярных стран, поперечные и косые азимутальные проекции — для карт земных полушарий, материков, звездного неба, Луны и других планет.

Аэрофототопография - Раздел топографии, изучающий методы создания топографических карт по материалам аэрофотосъемки.

Ангалифов цветных метод - (от греч. anaglyphos — рельефный), получение стереоскопического (объемного) изображения с использованием 2 окрашенных в дополнительные цвета изображений, составляющих стереопару, рассматриваемых через разноокрашенные светофильтры (разноцветные очки). Применяется главным образом для создания объемных иллюстраций в учебных пособиях, для объемного изображения рельефа на географических и геологических картах и др.

Аэрофотограмметрия - Раздел фотограмметрии, изучающий способы измерений различных объектов по аэрофотоснимкам.

Аэросьемка - Съемка местности с летательных аппаратов с использованием съемочных систем (приемников информации), работающих в различных участках спектра электромагнитных волн. Различают фотографическую, телевизионную, тепловую, радиолокационную и многозональную аэросъемку. Подробнее http://tochno-rostov.ru/topograficheskaya-semka/ortofotoplan/

tochno-rostov.ru

Теодолит: что это такое и как производится точное измерение горизонтальных углов - принципы работы с устройством

При помощи теодолита выполняются различные действия: измерение поверхности земли при проведении строительных работ, составление топографических карт, съемка местности для разных нужд.

Рассмотрим подробнее, какие функции выполняет теодолит, что это такое, каким образом его используют.

Что такое геодезия

Геодезия — это наука, занимающаяся точным измерением земной поверхности, созданием рабочих чертежей или карт и прочими прикладными задачами. Для всех этих направлений созданы специальные разделы геодезии, но наиболее ощутимой и важной для повседневной жизни является инженерная геодезия.

Именно этот раздел занимается съемкой местности для постройки зданий и сооружений, для прокладки дорог, для определения точности проходки шахтных выработок или тоннелей. Задачи, решаемые этой отраслью, носят чисто прикладной характер, тесно соприкасающийся со строительством или картографией.

Что такое теодолит

Теодолит — оптический измерительный прибор, при помощи которого с высокой точностью выполняются измерения вертикальных или горизонтальных углов. Он является основным инструментом геодезистов или маркшейдеров, производящих съемку местности.

Назначение теодолита — определение угла между двумя точками при помощи наведения визира поочередно на одну и другую точку, сравнения показаний на шкале самого прибора или на рейке — измерительной вертикальной линейке, которую удерживает ассистент на определенном расстоянии.

Существует много разновидностей теодолитов, различающихся по определенным признакам:

  1. Степень точности.
  2. Способ отсчета по вертикальной шкале.
  3. Конструкция.
  4. Принцип действия.

Классическая, первоначальная конструкция теодолита — чисто механическая, самая простая, но не дававшая особой точности измерений. На смену ей пришел теодолит оптический — самый популярный и распространенный по сей день.

Он обеспечивает достаточную точность измерений, но уступает лазерному типу конструкции, имеющему наименьшую погрешность и применяемому для самых ответственных работ.

Существуют также электронные теодолиты, имеющие высокое качество измерений любой степени сложности с выводом показателей на собственный дисплей. Преимуществом такого типа конструкции являются автоматически производящиеся вычисления, значительно сокращающие время на обработку данных или снижающие вероятность ошибки.

Важно! Основные части теодолита остаются неизменными, усложняется лишь система наведения и определения значений.

Как устроен теодолит

Основными узлами теодолита являются:

  1. Корпус.
  2. Зрительная труба.
  3. Система наведения (система регулирующих и настроечных винтов, позволяющих точно установить оси прибора по горизонтали и вертикали, навести зрительную трубу на определенную точку).
  4. Отвес или оптический центрир, служащий для настройки вертикали и точного выбора положения прибора (установки на точку).
  5. Штатив (тренога, трипод) для установки прибора в рабочем положении на грунт.

Основной элемент прибора — зрительная труба, при помощи которой производится точное наведение на определенную точку, определение параметров ее расположения относительно вертикали, горизонтали или другой точки с известными параметрами.

Строение теодолита основано на системе наведения основного элемента конструкции — визирной трубки (или зрительной трубы). Она установлена на специальной U-образной подставке и может перемещаться вокруг горизонтальной оси. Изменения наклона зрительной трубы отображаются на шкале вертикального круга.

В свою очередь, подставка вместе с трубой может поворачиваться вокруг вертикальной оси. Изменения положения или направления зрительной трубы отображаются на шкале горизонтального круга. Все положения трубы могут быть зафиксированы или скорректированы при помощи винтов тонкой настройки, от качества наведения зависит точность результата.

Установка на грунте производится с помощью штатива — треноги. Для настройки горизонтали используется отвес и настроечные винты, расположенные в нижней части корпуса.

Все, для чего предназначен теодолит, это определение вертикальных или горизонтальных углов, позволяющее вычислить расстояние между точками, разницу уровней точек по вертикали. Точность измерений зависит от двух параметров:

  1. Качество прибора.
  2. Точность вычислений.
Внимание! Оптический теодолит не дает окончательных данных, большинство значений получаются путем последующей обработки, расчетов. В этом заключена ключевая особенность прибора, отличающего его от более современных типов.

Для чего нужен горизонтальный круг теодолита

Горизонтальный круг — это одновременно некая условная плоскость, геометрическое поняти, и конкретная деталь конструкции прибора, служащая опорой для подставки зрительной трубы.

Горизонтальный круг служит для определения углов между различными объектами, расположенными вокруг прибора.

При наведении зрительной трубки на определенные точки производится поворот прибора относительно вертикальной оси. Угол поворота фиксируется на шкале, расположенной на горизонтальном круге.

В этом состоит принцип работы теодолита — разница первоначального показания и значения, получившегося после поворота трубки с наведением на другую точку, составляет угловое расстояние между ними, что может послужить основой для многих расчетов.

Из чего состоит горизонтальный круг теодолита

В состав горизонтального круга входят две основные шкалы прибора — лимб и алидада. Они предназначены для измерения горизонтальных углов. Одна шкала остается неподвижной, а другая поворачивается вместе с визирной трубкой, показывая величину отклонения от первоначального положения.

Внимание! Принцип работы вертикального круга практически ничем не отличается от горизонтального, он имеет такое же устройство и выполняет подобные функции. Единственная разница — расположение в вертикальной плоскости.

Что такое лимб и алидада

Лимб — основная шкала прибора, расположенная на горизонтальном круге. Она имеет разбивку на 360° (иногда шкала разбивается на грады или гоны, т.е. на 400 частей). Лимб условно неподвижен — во время измерений он зафиксирован винтом. При необходимости лимб открепляется и устанавливается в удобном для измерений положении — например, нулевым значением на определенную точку, относительно которой будут производиться измерения.

Алидада в теодолите играет роль подвижной шкалы, показывающей угол отклонения от первоначального значения. Показания определяются при помощи штриха, нанесенного на алидаду (в некоторых случаях наносится штриховой сектор с нониусом). Любой поворот зрительной трубки вызовет вращение алидады, которая покажет угол отклонения.

Геометрические условия теодолита

Геометрический условия — это соотношения расположения всех узлов прибора. Оси теодолита должны находиться в строгом соответствии друг с другом:

  1. Вертикальная и горизонтальная оси должны быть перпендикулярны.
  2. Ось вращения трубы должна быть перпендикулярна визирной оси.
  3. Ось цилиндрического уровня (пузырькового уровня) должна быть строго горизонтальна.

Вертикальная ось (ось вращения алидады) и горизонтальная ось являются основными параметрами работы прибора,  подлежат периодической поверке (контролю соответствия требованиям) или юстировке (настройке правильного положения) перед началом работы.

Как проверить теодолит

Для правильной, точной работы прибора требуется качественная настройка его положения и соответствия осей. Для этого проводятся регулярные проверки и юстировки, позволяющие точно установить прибор, обеспечить правильное положение осей и плоскостей.

Проверка производится поэтапно:

  1. Установка на точку. Положение треноги настраивается таким образом, чтобы отвес точно указывал на точку с известными параметрами (точку стояния), отмеченную на грунте.
  2. Установка горизонтальной плоскости. Производится настройка горизонтали по пузырьковому уровню, затем прибор разворачивается на 180° и вновь настраивается. Приемлемым положением считается несоответствие положения пузырька не более 1 деления.
  3. Установка визирной оси. Выбирается и замеряется отдаленная точка. Затем труба поворачивается на 180°, прибор разворачивается и вновь производятся измерения (иначе говоря, производится измерение параметров точки при положениях КП или КЛ). Затем лимб открепляют и разворачивают на 180°, после чего все операции повторяются. Полученные значения рассчитываются по специальной методике, результат должен соответствовать паспортным значениям. При обнаружении расхождений производится настройка перпендикулярности визирной оси или оси вращения трубы.

Все проверки или юстировки производятся перед тем, как пользоваться теодолитом. Для настройки оптики прибор направляется в специализированную мастерскую или на завод.

Стандартный ряд теодолитов в соответствии с ГОСТ 

Теодолит — ответственный измерительный прибор, от точности и качества работы которого зависит результат строительства, прокладки дорог или тоннелей и т.д. Поэтому все технические параметры теодолитов четко определены и регламентированы ГОСТ 10529-96. В частности, приборы подразделены на группы:

  1. Высокоточные.
  2. Точные.
  3. Технические.

Литеры в обозначении приборов указывают на:

  1. Т — теодолит.
  2. М — маркшейдерский.
  3. К — снабжен компенсатором положения плоскостей.
  4. П — прямого видения (изображение не перевернуто).
  5. А — автоколлимационный.
  6. Э — электронный.

Цифры в обозначении указывают на среднюю погрешность. В новых образцах самая первая цифра — номер модификации. Каждая группа имеет свой перечень моделей, технические характеристики которых соответствуют определенным требованиям.

Что такое повторительный теодолит

В повторительных теодолитах лимб имеет возможность вращения вместе с алидадой на заданную величину. Это помогает откладывать одинаковые углы без опасности ошибки. Такая конструкция является более совершенной, но имеет большую опасность появления ошибок за счет износа поворотных механизмов, появления люфта или прочих неисправностей.

Что такое неповторительные теодолиты

Неповторительные теодолиты имеют жестко закрепленный лимб, поворачивающийся только при ослаблении фиксирующего винта для настройки или установки точки на ноль.

Такая система является более старой, но применяется еще довольно широко.

Жестко закрепленный лимб снижает возможность появления ошибок, но лишает конструкцию некоторых возможностей, присущих повторительным образцам.

Фототеодолит

Специфическая разновидность теодолита, предназначенная для точной съемки объектов с привязкой к системе координат, угловой привязкой или прочими параметрами. Может быть выполнена как фотокамера, объектив которой выполняет параллельно функцию зрительной трубы теодолита, или раздельная камеры и зрительная труба.

Наиболее распространенной моделью фототеодолита является комплект Photeo 19/1318, позволяющий производить качественные снимки для точных измерений местности в исследовательских или прикладных целях.

Гиротеодолит

Гиротеодолит предназначен для работы в шахтных или полевых условиях без привязки к системе триангуляции. Конструктивно является сочетанием гирокомпаса высокой точности с оптическим теодолитом. Прибор имеет возможность точного определения истинного азимута (величина погрешности не более 6-60″), работы в любых погодных или климатических условиях. С практической точки зрения, это — вполне обычный теодолит, как пользоваться или как его настраивать —  большой разницы с оптическими моделями не имеется. Гирокомпас, по сути, является дополнительным приспособлением, дающим возможность привязки осей к системе координат.

Наиболее распространенными моделями гиротеодолитов являются 01-В1, МВТ-2, МТ-1 и другие.

Электронный

Электронный теодолит (современное название — тахеометр) является самой совершенной конструкцией, используемой в настоящее время. Прибор имеет встроенный процессор, производящий необходимые вычисления по полученным показаниям, что практически полностью исключает возможность появления ошибок. Кроме того, все данные по обследованным точкам остаются в памяти прибора, намного упрощая работу и исключая необходимость повторной установки и наведения прибора. Возможность использования в темное время суток и в любых погодных условиях делает электронный теодолит наиболее точным и качественным устройством.

К наиболее распространенным моделям электронных теодолитов относятся RGK T-05, RGK T-20, VEGA TEO-5B и другие.

Как подготовить теодолит к работе

Теодолит — устройство, способное к настройке практически всех механических параметров непосредственно перед использованием. Необходимость обеспечения высокой точности измерений требует постоянной проверки работоспособности и качества показаний, которое не должно выходить за допустимые пределы.

Подготовка теодолита к работе производится поэтапно:

  1. Установка треноги на точку.
  2. Установка на штатив теодолита, фиксация становым винтом.
  3. Настройка вертикали и горизонтали (центрирование и нивелирование).
  4. Настройка (фокусирование) зрительной трубки и микроскопа.
  5. Установка и подключение освещения.

Все эти действия могут потребовать больших или меньших затрат времени в зависимости от состояния прибора и предыдущих настроек.

Внимание! В паспорте прибора имеются четкие и подробные указания, каким образом производятся все подготовительные операции. Перед началом работ следует внимательно прочитать инструкцию и соблюдать все ее требования во время практических действий.

Как измерить углы

Измерение углов — основная функция прибора. По сути, это единственная операция, которую способен выполнять теодолит.

Прежде всего следует рассмотреть измерение горизонтальных углов теодолитом. Установленный на точку стояния (вершину измеряемого угла) и подготовленный к работе (отъюстированный) прибор наводится на точку, определяющую сторону угла.

Для этого труба от руки наводится таким образом, чтобы точка оказалась в поле зрения визира, после чего производится точная настройка при помощи настроечных винтов алидады. При этом лимб можно оставить в исходном положении или установить на нем нулевое положение, что упростит расчеты. Показания заносятся в журнал измерений.

Затем труба визируется на вторую точку подобным образом. Положение алидады укажет величину угла между первой и второй точками относительно вершины — точки стояния прибора.

Вертикальные углы измеряются подобным образом, но показания снимаются с вертикального круга теодолита. Существует два положения вертикального круга — КП и КЛ, означающие соответственно правое и левое расположение вертикального круга относительно трубы. При расчетах это следует учитывать, поскольку при множественных измерениях может случиться ошибка, способная коренным образом повлиять на результат.

Сферы применения теодолита

Для чего нужен теодолит в строительных или научных работах — вопрос весьма емкий.

При работе «в поле», когда не имеется никакой привязки к горизонтальной или вертикальной плоскости, точная разбивка участка без применения соответствующей аппаратуры невозможна.

Точный выбор направления при прокладке дорог, корректировка оси штреков или тоннелей — все эти действия требуют высокой точности измерений и привязки к системе триангуляции, иначе неизбежные ошибки приведут к потере направления, нарушениям в размерах зданий и сооружений.

Следует учитывать, что тоннели обычно ведутся с противоположных сторон навстречу друг другу, а при строительстве используются унифицированные элементы, имеющие определенные размеры и формы. Ошибки при измерениях приведут к полной невозможности получить нужный результат.

Немаловажную роль теодолит играет и в научной деятельности, в частности — в картографии. Точность большинства карт, которые используются сегодня — заслуга именно теодолита.

Что такое нивелир

Нивелир — геодезический оптический прибор, с помощью которого определяется горизонталь или разница в уровнях нескольких точек. По сравнению с функциями, которыми располагает теодолит, нивелир обладает иными способностями.

Возможность создания строго горизонтальных плоскостей очень важна при строительстве, так как высокие здания или сооружения, опирающиеся на основание с нарушениями геометрии, могут попросту упасть. Поэтому применение нивелиров распространено не менее широко, чем использование теодолитов, чей набор функций зачастую оказывается избыточным.

Разница между теодолитом и нивелиром

Разница между этими приборами состоит в назначении и выполняемых функциях. Теодолит создан для измерения углов.

Нивелир производит определение горизонтальных (или вертикальных) линий или плоскостей, осуществляет сравнение имеющихся поверхностей с условной горизонталью.

При этом, если сопоставить возможности, которыми обладают теодолит и нивелир, разница оказывается в пользу теодолита.

Он способен выполнять функции нивелира, и на практике зачастую так и происходит. В то же время, нивелир имеет лишь контрольные функции, для сложного измерения он не предназначен. При этом, более простое устройство прибора означает большую надежность и устойчивость работы.

Во время подготовительного периода или при проведении работ, не имеющих первостепенной важности, нивелир оказывается надежным и точным помощником.

Возможности, которыми обладает теодолит или его разновидности, весьма важны для практической и научной деятельности. Привязка к местности и координатной сетке — важное условие для точных и ответственных работ, когда ошибка может стоить очень дорого.

Видео по теме: подготовка теодолита к работе

stroim.guru

Устройство теодолита

Теодолит - геодезический прибор, предназначенный для измерения горизонтальных и вертикальных углов.

Горизонтальный круг, лимб и алидада

Основным конструктивным элементом и рабочей мерой теодолита является горизонтально расположенный градуированный угломерный круг (по существу - круглый транспортир), называемый лимбом (от англ. limb - край, кайма). Градуированное кольцо лимба горизонтального круга всех теодолитов мира оцифровано от 0о(г) и до 0°(г> (360° или 400г)по ходу часовой стрелки (исходя из принятой в геодезии традиции считать именно это направление поворота положительным для счета ориентирующих углов).

Дуга окружности между двумя соседними делениями лимбы называется ценой деления лимба. Цена деления лимба у теодолитов может быть различной: от 1° у теодолитов технической точности и до 5' у высокоточных теодолитов. Лимбы значительно точнее обычных транспортиров: по лимбам высокоточных теодолитов с помощью специальных отсчетных устройств - микрометров - можно снимать отсчеты с точностью до десятых долей угловой секунды.

Над лимбом находится подвижная вращающаяся часть теодолита с отсчетным индексом, называемая алидадой (в англ, варианте - alidade, происходит от араб. - сторона, боковая часть). Алидада вращается вокруг оси, проходящей через центр оцифрованного кольца лимба перпендикулярно его плоскости. Поворотом вокруг своей оси алидада ориентируется на лимбе в заданном направлении и по ее индексу производится отсчет по лимбу.

Ось вращения алидады называется вертикальной или главной осью теодолита. В рабочем положении главная ось теодолита совмещается с отвесной линией, проходящей через вершину измеряемого (или откладываемого на местности) горизонтального угла, а плоскость лимба, при этом, занимает горизонтальное положение.

Page 2

На алидаде на двух подставках на горизонтальной оси вращения размещается визирное приспособление, с помощью которого алидада ориентируется по линиям местности, образующим измеряемый горизонтальный угол. В теодолитах в качестве визирного приспособления используется зрительная труба, представляющая собой, по сути, оптический прицел.

В принципе, визирным приспособлением может служить прямой стержень с мушкой на одном конце и целиком с прорезью на другом - как на винтовке. Но, как хорошо известно, лучше иметь не обыкновенную винтовку с мушкой и целиком, а снайперскую, оборудованную оптическим прицелом. Вот и в теодолитах в качестве визирного приспособления используется оптический прицел.

Зрительная труба может свободно вращаться вокруг зафиксированной в подставках алидады горизонтальной оси, моделируя таким своим вращением коллимационную плоскость. Ось вращения зрительной трубы называется горизонтальной осью теодолита (в отличие от главной, вертикальной). Таким образом, алидада горизонтального круга вращается вокруг главной, вертикальной оси теодолита в горизонтальной плоскости, а зрительная труба - вокруг его горизонтальной оси в вертикальной плоскости.

В простейшем случае зрительная труба состоит из трех оптических элементов: объектива, сетки нитей и окуляра.

Объектив - это, принципиально, собирающая (двояковыпуклая) линза, располагающаяся в зрительной трубе со стороны рассматриваемого в нее объекта (откуда и название - объектив). Задача объектива - построить в зрительной трубе уменьшенное действительное (и, в простейшем случае, перевернутое, т.е. обратное) изображение наблюдаемого объекта.

Зрительные трубы бывают астрономические - с обратным изображением наблюдаемых объектов, и земные - с прямым изображением. До недавних пор в теодолитах использовались астрономические трубы, так как их конструкция проще и надежнее (в земных трубах должен присутствовать, как минимум, еще один дополнительный, по сравнению с астрономическими трубами, оптический элемент, еще раз переворачивающий изображение объекта). И, нужно сказать, это не создавало особых неудобств, так как теодолит не предназначен для простого рассматривания объектов местности. С помощью зрительных труб теодолитов осуществляется наведение на точечные неподвижные визирные цели, а это вполне успешно можно делать и с обратным (перевернутым) изображением такой цели. Однако в последние годы, в связи со значительным прогрессом в оптическом приборостроении зрительные трубы теодолитов стали делать земными, т.е. с более привычным для наблюдателя прямым изображением.

Изображение объекта строится на размещающемся в другом конце трубы прозрачном экране (плоскопараллельной стеклянной пластине), на который нанесены два взаимно перпендикулярных пересекающихся в центре экрана тонких штриха - вертикальный и горизонтальный. Этот прозрачный экран с перекрестием называется сеткой нитей (так как нанесенные на него пересекающиеся тонкие штрихи - которых, кстати, может быть больше чем два, и некоторые из них могут быть сдвоенными - принято называть нитями).

В итоге наблюдатель может видеть на сетке нитей одновременно и рассматриваемый в трубу объект, и перекрестие, исполняющее роль прицела. Однако, проблема в том, что и построенное на сетке изображение местного предмета, и сама сетка очень малы, и рассмотреть их невооруженным глазом весьма трудно. Поэтому наблюдатель рассматривает их через установленную в конце трубы перед сеткой нитей увеличивающую лупу, называемую окуляром (от слова «око», т.е. глаз).

Поскольку каждому наблюдателю присущи свои особенности зрения, то для работы со зрительной трубой теодолита ему необходимо настроить окуляр таким образом, чтобы четко видеть перекрестие сетки нитей. Этого добиваются вращением окулярного кольца и небольшим перемещением окуляра (вперед-назад) относительно сетки нитей. Установка резкого изображения сетки нитей путем вращения окуляра называют установкой зрительной трубы «по глазу» (имеется в виду глаз наблюдателя).

Еще одной проблемой при пользовании зрительной трубой является то, что рассматриваемые в нее предметы могут находиться на разном удалении. Соответственно, их действительные изображения будут строиться в трубе также на разном расстоянии от объектива и могут не попадать на сетку нитей. Следовательно, устройство зрительной трубы должно предусматривать возможность корректировки положения в ней либо сетки нитей (вместе с окуляром), либо изображения самого местного предмета.

Первоначально, на заре развития геометрической оптики и оптических приборов все зрительные трубы делались с, так называемой, внешней фокусировкой и представляли собой что-то вроде раздвижных тубусов, в одной из двух частей которых (более широкой) располагался объектив, а в другой - выдвижной - сетка нитей с окуляром. Выдвигая или задвигая тубус с сеткой нитей и окуляром можно было добиться, чтобы изображение того или иного местного предмета строилось объективом точно на сетке нитей и было видно резко (четко). Недостатком труб с внешней фокусировкой была их переменная длина, причем, в весьма значительном диапазоне.

В современных теодолитах используются зрительные трубы с внутренней фокусировкой, в которых корректируется положение построенного изображения местного предмета, а не сетки нитей с окуляром. Это достигается размещением в зрительной трубе между объективом и сеткой нитей рассеивающей (двояковогнутой) линзы, которая может двигаться вдоль трубы в обе стороны - вперед и назад, изменяя эффективное фокусное расстояние объектива. Такая линза называется фокусирующей. Перемещая ее в трубе с помощью специального фокусирующего винта - кремальеры - можно добиться построения изображения наблюдаемого объекта точно на сетке нитей и, тем самым, увидеть этот объект четко и резко одновременно со штрихами (прицелом) сетки нитей. Соответствующую процедуру называют фокусированием зрительной трубы или установкой зрительной трубы по предмету.

Page 3

Таким образом, для работы со зрительной трубой теодолита сначала необходимо установить ее по глазу наблюдателя, добившись вращением окулярного кольца четкого (резкого) изображения штрихов сетки нитей (т.е. сначала разобраться с «прицелом» теодолита). А затем, вращением кремальеры добиться четкого (резкого) изображения наблюдаемой визирной цели, т.е. установить зрительную трубу по предмету. В итоге в зрительной трубе будут четко (резко) видны как сама визирная цель, так и перекрестие сетки нитей, которое (как прицел) нужно будет точно навести на визирную цель.

Прямая, соединяющая оптический центр объектива с центром (перекрестием) сетки нитей, называется визирной осью зрительной трубы.

У зрительной трубы, кроме визирной, существуют еще две оси: геометрическая, представляющая собой ось симметрии корпуса зрительной трубы, и оптическая, под которой понимают прямую, соединяющую оптические центры объектива и окуляра. Однако в теории теодолита, как прибора, определяющую роль играет именно визирная ось зрительной трубы, так как именно она является линией прицеливания и той прямой, вращением которой вокруг горизонтальной оси теодолита моделируется коллимационная плоскость.

Навести зрительную трубы теодолита на цель - это значит сориентировать ее в пространстве (по горизонтали и по вертикали) таким образом, чтобы ее визирная ось проходила точно через выбранную визирную цель или, иначе говоря, чтобы перекрестие сетки нитей в поле зрения зрительной трубы находилось точно на наблюдаемой в трубу цели.

Теодолит наводится на визирную цель поворотами алидады вокруг его главной оси и зрительной трубы - вокруг его горизонтальной оси. Приблизительное (грубое) наведение теодолита на цель производится наблюдателем руками. Но точно навести перекрестие сетки нитей на цель таким образом невозможно - слушком резкими и грубыми будут движения алидады и зрительной трубы, если их выполнять от руки.

Для точного наведения теодолита на визирную цель на алидаде и на одной из подставок зрительной трубы имеются по паре винтов. Один винт в каждой такой паре - закрепительный. Им фиксируется (зажимается) в некотором текущем положении (т.е. лишается свободного движения от руки), соответственно, алидада или зрительная труба. Другой винт в каждой паре - наводящий (или микрометренный). Вращением микрометренного винта (при зажатом парном закрепительном) можно осуществлять медленное и плавное перемещение, соответственно, алидады по горизонтали или зрительной трубы по вертикали и, тем самым, уже точно наводить теодолит на цель.

Диапазон работы микрометренных винтов ограничен. Поэтому первое приблизительное наведение теодолита на цель нужно производить руками. И только потом, предварительно закрепив в неподвижном положении алидаду и зрительную трубу, микрометренными винтами выполняют точное наведение перекрестия сетки нитей на визирную цель.

bstudy.net

алидада теодолита - это... Что такое алидада теодолита?

  • АЛИДАДА — (араб. al hada линейка). Металлическая линейка с узкими прорезами или с вертикальными пластинками (диоптрами), которая, вместе с разделенным кругом, в центре которого она вращается, составляет часть почти всех угломерных снарядов. Словарь… …   Словарь иностранных слов русского языка

  • Алидада — и визир …   Википедия

  • Горизонтальный круг теодолита — предназначен для измерения горизонтальных углов и состоит из лимба и алидады. Лимб представляет собой стеклянное кольцо, на скошенном крае которого нанесены равные деления с помощью автоматической делительной машины. Цена деления лимба (величина… …   Википедия

  • Теодолит — середины 20 го века Теодолит  измерительный прибор для измерения горизонтальных и вертикальных углов при геодезических работах, топографических, геодезических и маркшейдерских съёмках, в строительстве и т. п. Основной рабоч …   Википедия

  • ГОСТ 21830-76: Приборы геодезические. Термины и определения — Терминология ГОСТ 21830 76: Приборы геодезические. Термины и определения оригинал документа: 50. Алидада D. Alhidade F. Alidade Определения термина из разных документов: Алидада 80. Ампула уровня D. Röhre E. Level vial F. Fiole de niveau… …   Словарь-справочник терминов нормативно-технической документации

  • Теодолит —         геодезический инструмент (См. Геодезические инструменты) для определения направлений и измерения горизонтальных и вертикальных углов при геодезических работах, топографических и маркшейдерских съёмках, в строительстве и т. п. (см.… …   Большая советская энциклопедия

  • Универсальный инструмент —         универсал в астрономии и геодезии, переносный угломерный инструмент, служащий для измерения углов в вертикальной и горизонтальной плоскостях. С помощью У. и. по наблюдениям звёзд и Солнца определяют географические координаты места,… …   Большая советская энциклопедия

  • теодолит — геодезический инструмент для измерения на местности горизонтальных и вертикальных углов. Состоит из зрительной трубы, вращающегося вокруг вертикальной оси горизонтального круга (лимба) с алидадой, на подставку которой опирается горизонтальная ось …   Энциклопедия техники

  • Гиротеодолит —         гироскопическое визирное устройство, предназначенное для ориентирования туннелей, шахт, топографической привязки и др. Г. служит для определения азимута (пеленга) ориентируемого направления и широко используется при проведении… …   Большая советская энциклопедия

  • теодолит — [тэ], а; м. [от греч. theaomai смотрю и dolichos длинный] Угломерный инструмент, применяемый в геодезии, астрономии, в инженерных работах и т.п. Труба теодолита. Установить т. ◁ Теодолитный, ая, ое. Т. треножник. Т. прибор (=теодолит). Т ая… …   Энциклопедический словарь

  • Корпус военных топографов — Основание Указ императора Александра I 28 января 1822 года Ликвидация Постановление СНК СССР 1918 год Корпус военных топографов (КВТ) (до 1866  Корпус топографов)  был организован в 1822 году для централизов …   Википедия

dic.academic.ru

Теодолит

Билет 1.

Теодолит – геодезический прибор для измерения на местности горизонтальных и вертикальных углов посредством оптических систем, лимбов и отсчетных устройств.

Основными частями теодолита являются: лимб, алидада, зрительная труба, уровни, вертикальный круг, трегер, штатив.

Лимб – угломерный круг с делением от 0° до 360°.

Цена деления лимба – величина центрального угла, опирающегося на дугу, соответствующую наименьшему делению лимба.

Алидада – подвижная часть теодолита, несущая систему отсчитывания по лимбу.

Зрительная труба – служит для визирования на наблюдаемые предметы, крепится на подставках алидадной части инструмента.

Уровни – служат для приведения осей инструмента в горизонтальное или вертикальное положение. Бывают цилиндрические и круглые, состоят из ампулы, оправы и регулировочного приспособления.

Нуль-пункт уровня – точка в середине шкалы ампулы.

Система осей теодолита – обеспечивает вращение алидадной части вокруг вертикальной оси. Вертикальный круг – служит для измерения вертикальных углов.

Трегер – подставка с тремя подъемными винтами.

Винты – закрепительные и микрометренные (наводящие). Служат для фиксации отдельных частей теодолита: трубы, алидады, лимба.

Сетка нитей – взаимно перпендикулярные штрихи, нанесенные на стеклянную пластинку. Биссектор – две вертикальные близко расположенные параллельные линии сетки нитей. Штатив – приспособление в виде треноги для крепления теодолита в процессе работы.

Укомплектован нитяным отвесом и становым винтом.

Исследование теодолита – это комплекс действий с целью установления качества изготовления и сборки как отдельных частей, так и всего инструмента в целом и правильности их взаимодействия.

Поверки теодолита – это комплекс действий по проверке соответствующих геометрических и оптико-механических условий. Выполняются в определенной последовательности. Юстировка теодолита – это исправление инструмента посредством юстировочных (исправительных) винтов.

Основные оси теодолита

1.Визирная ось (VV') – мнимая линия, соединяющая перекрестие сетки нитей и оптический центр объектива.

2.Ось цилиндрического уровня при алидаде горизонтального круга (UU') – это касательная к дуге продольного сечения внутренней поверхности ампулы в нуль-пункте.

3.Ось вращения алидады горизонтального круга (ZZ') – основная ось, около которой осуществляется поворот прибора в горизонтальной плоскости.

4.Ось вращения зрительной трубы теодолита (HH') – мнимая линия, вокруг которой происходит вращение зрительной трубы.

Расположение основных осей теодолита приведено на рис. 2.1. Рис. 2.1. Схематическое расположение основных осей теодолита Геометрические условия основных осей теодолита

Коллимационная плоскость – плоскость, образуемая визирной осью зрительной трубы при вращении ее вокруг горизонтальной оси.

Коллимационная ошибка (с) – угол между фактическим и теоретическим положением визирной оси, которую вычисляют по формуле

(2.1) где КЛ, КП – отсчеты по горизонтальному кругу на хорошо видимую, четко очерченную цель при двух положениях вертикального круга. Основное условие вертикального круга теодолита заключается в том, чтобы визирная ось зрительной трубы была параллельна оси цилиндрического уровня при алидаде вертикального круга, когда отсчет на этом круге равен нулю.

Место нуля (МО) – угол, образованный не параллельностью визирной оси и оси уровня при алидаде вертикального круга. Вычисляют по формуле для теодолита 2Т30

(2.2)где КЛ, КП – отсчеты по вертикальному кругу на хорошо видимую, четко очерченную цель при двух положениях вертикального круга.

Угол наклона (ν) – угол между горизонтальной плоскостью и направлением визирной линии трубы.

Угол наклона (ν) для теодолита 2Т30 вычисляют по формулам

(2.3)

(2.4)где МО – значение места нуля. Если МО ≤ 2t, где t – точность инструмента, то ν = КЛ; КЛ, КП – отсчеты по вертикальному кругу.

Рис. 2.2. Теодолит Т30:

1 – наводящий (микрометренный) винт горизонтального круга; 2 – окуляр микроскопа;

3– зеркало подсветки;

4– посадочный паз для буссоли;

5– закрепительный винт зрительной трубы;

6– наводящий (микрометренный) винт зрительной трубы;

7– наводящий (микрометренный) винт алидады;

8– трегер (подставка);

9– подъемный винт;

10– крышка

Рис. 2.4. Поле зрения микроскопа теодолита 2 Т 30

Нивелирование – процесс измерения превышения одних точек местности над другими.

Нивелир – геодезический прибор, предназначенный для измерения превышения между двумя точками при помощи горизонтального визирного луча и двухсторонних шашечных реек с сантиметровыми делениями на обеих сторонах.Основными частями нивелира являются:

-зрительная труба;

-цилиндрический уровень при трубе;

-элевационный винт;

-установочный круглый уровень;

-закрепительный и микрометренный винты азимутального вращения;

-трегер.

Репер – постоянный знак закрепления нивелирного хода.

Геометрическое нивелирование – определение превышений горизонтальным лучом визирования при помощи нивелира и нивелирных реек.

Неравенство плеч на станции – расхождение в расстояниях от нивелира до задней и передней реек.

Главное условие нивелира – ось уровня при трубе должна быть параллельна визирной оси трубы.

Превышение одной точки относительно другой – разность отметок этих точек.

Станция нивелирования – точка стояния нивелира, на которой выполняется измерение превышения.

Рис. 2.5. Станция нивелирования:

h – превышение точки В относительно А; a – отсчет на заднюю рейку;

b – отсчет на переднюю рейку

Рис. 2.6. Нивелир Н 3:

1 – элевационный винт уровня; 2 – зрительная труба; 3 – корпус контактного цилиндрического уровня; 4 – целик; 5

– винт фокусировки трубы; 6 – закрепительный винт зрительной трубы; 7 – наводящий (микрометренный) винт трубы; 8 – круглый установочный уровень; 9 – подъемный винт; 10 – пружинящая пластинка

Рис. 2.7. Поле зрения нивелира Н 3

Билет 2.

Перед измерением угла необходимо привести теодолит в рабочее положение, то-есть, выполнить три операции: центрирование, горизонтирование и установку зрительной трубы.

Центрирование теодолита - это установка оси вращения алидады над вершиной измеряемого угла; операция выполняется с помощью отвеса, подвешиваемого на крючок станового винта, или с помощью оптического центрира.

Горизонтирование теодолита - это установка оси вращения алидады в вертикальное положение; операция выполняется с помощью подъемных винтов и уровня при алидаде горизонтального круга.

Установка трубы - это установка трубы по глазу и по предмету; операция выполняется с помощью подвижного окулярного кольца (установка по глазу - фокусирование сетки нитей) и винта фокусировки трубы на предмет (поз.15 на рис.4.4).

Измерения угла выполняется строго по методике, соответствующей способу измерения; известно несколько способов измерения горизонтальных углов: это способ отдельного угла (способ приемов), способ круговых приемов, способ во всех комбинациях и др.

Билет№3

Билет№4

studfiles.net

Устройство теодолита

Геометрическая схема измерения горизонтальных и вертикальных углов

 
Рис. 15.2 – Геометрическая схема измерения горизонтальных и вертикальных углов
 
Рис. 15.2 – Геометрическая схема измерения горизонтальных и вертикальных углов

Принципиальная схема конструкции теодолита изображена на рис. 15.2. На схеме отображены четыре главные оси теодолита:

- - вертикальная ось вращения теодолита;

- - ось цилиндрического уровня;

- - горизонтальная ось вращения зрительной трубы;

- - визирная ось зрительной трубы.

 
Рис. 15.3 – Схема геометрических осей теодолита

Вертикальная ось вращения теодолита должна занимать отвесное положение. Приведение вертикальной оси вращения в отвесное (выделенное) положение выполняется с помощью цилиндрического уровня, продольная ось которого должна быть перпендикулярна вертикальной оси вращения теодолита ().

Наведение визирной оси зрительной трубы теодолита на точку осуществляется путем поворотов подвижной части теодолита вокруг вертикальной оси вращения и зрительной трубы вокруг горизонтальной оси . Для этого горизонтальная ось вращения зрительной трубы должна быть перпендикулярна вертикальной оси (), а визирная ось зрительной трубы должна быть перпендикулярной горизонтальной оси вращения зрительной трубы ().

Визирная ось зрительной трубы физически представлена в теодолите перекрестием сетки нитей зрительной трубы. В отличие от трех предыдущих осей визирную ось нельзя пощупать, это не материальное вещь, а «мнимая прямая», проходящая через заднюю главную точку объектива и перекрестие сетки нитей [5, с.87] . Поэтому фактически на точку наводится перекрестие сетки нитей, которое находится на визирной оси теодолита.

Повороты теодолита вокруг его вертикальной оси вращения фиксируются по лимбу горизонтального круга , а повороты зрительной трубы вокруг ее горизонтальной оси вращения - по лимбу вертикального круга . Для этого горизонтальный и вертикальный круги имеют оцифровку, а с теодолитом и зрительной трубой связаны отсчетные индексы, по которым берутся отсчеты по и .

Таким образом, принципиальная схема теодолита предполагает выполнение следующих геометрических условий:

1 – вертикальная ось вращения должна занимать отвесное положение;

2 – продольная ось цилиндрического уровня должна быть перпендикулярная вертикальной оси вращения ;

3 – горизонтальная ось вращения зрительной трубы должна быть перпендикулярна вертикальной оси вращения ;

4 – визирная ось зрительной трубы должна быть перпендикулярна горизонтальной оси вращения зрительной трубы;

5 – перекрестие сетки нитей должно лежать на визирной оси зрительной трубы либо находится в коллимационной плоскости.

Коллимационной плоскостью называется плоскость, получаемая при вращении визирной оси вокруг горизонтальной оси вращения зрительной трубы.

Устройство теодолита рассмотрим на примере теодолита Т30 (рис. 2). При этом будем использовать термин «теодолит» без указания его модели. Лишь в тех случаях, когда модели имеют какие-либо отличия, будем указывать название модели.

Конструктивно теодолит Т30 состоит из 2-х частей: нижней неподвижной, называемой подставка (иногда называют трегер), и верхней несъемной подвижной части, называемой алидада. Обе части соединены друг с другом посредством вертикальной осевой системы (рис.1, ось ).

Алидада – это часть геодезического прибора, расположенная соосно с лимбом и несущая элементы отсчетного устройства [ 1, ГОСТ 21830-76].

Лимб – это рабочая мера геодезического прибора в виде круговой шкалы, предназначенная для воспроизведения единицы плоского угла [1, ГОСТ 21830-76].

В теодолите Т30 лимб представляет собой круглую стеклянную пластину, на одной из поверхностей которой ближе к краю пластины выгравированы штрихи круговой шкалы, предназначенной для производства по ним отсчетов, как например, по обычной линейке. Только в отличие от линейки, которая всегда прямолинейна, шкала на лимбе круговая, т.е. расположена вдоль окружности.

 
Рисунок 15.4 – Теодолит Т30 и его основные конструктивные элементы: А) штатив и его элементы: 1 – ножка штатива; 2 – головка штатива; 3 – становой винт; 4 – крючок для нитяного отвеса; 5 – нитяный отвес; Б) теодолит и его элементы: 6 – основание подставки (футляра) теодолита; 7 – подъемные винты подставки; 8 – подставка теодолита; 9 – закрепительный винт алидады горизонтального круга; 10 – наводящий винт алидады горизонтального круга; 11 – установочный цилиндрический уровень; 12 – наводящий винт зрительной трубы; 13 – несущие колонки; 14 – рукоятка винта фокусировки зрительной трубы (кремальера); 15 – закрепительный винт зрительной трубы; 16 – коллиматорные визиры; 17 – зрительная труба; 18 – корпус вертикального круга; 19 – посадочный паз для буссоли; 20 – отсчетный микроскоп; 21 – диоптрийное кольцо окуляра зрительной трубы; 22 – объектив зрительной трубы; 23 – диоптрийное кольцо окуляра отсчетного микроскопа; 24 – зеркальце иллюминатора для подсветки оптической системы внутри теодолита; 25 – корпус горизонтального круга;. 26 – наводящий винт лимба горизонтального круга; 27 - закрепительный винт лимба горизонтального круга.

Лимб всегда закреплен на носителе лимба, который называется кругом лимба. Круг лимба – это деталь геодезического прибора, несущая лимб [1, ГОСТ 21830-76] . Различают горизонтальный и вертикальный круги. Первый из них несет лимб, предназначенный для измерения горизонтальных углов, а второй – вертикальных. Часто используют более короткие выражения типа «горизонтальный круг» или «вертикальный круг» вместо более длинных словосочетаний «лимб горизонтального круга» или «лимб вертикального круга». Соответственно, когда речь идет об алидаде, то используют выражения «алидада горизонтального круга» или «алидада вертикального круга», вместо того, чтобы говорить «отсчетное устройство или часть теодолита, предназначенная для взятия отсчетов по лимбу горизонтального круга» или «отсчетное устройство или часть теодолита, предназначенная для взятия отсчетов по лимбу вертикального круга»

Подставка 8 (рис.2) с тремя подъемными винтами 7 жестко скреплена с круглым основанием 6 металлического футляра теодолита. Этим круглым основанием теодолит устанавливается на головку 2 штатива и скрепляется с ней с помощью станового винта 3. В становом винте имеется крючок 4 для закрепления нити 5 отвеса, посредством которого теодолит центрируется над точкой. Штатив со становым винтом, крючком для отвеса и сам отвес не являются конструктивными элементами теодолита, а являются отдельными самостоятельными устройствами.

Верхняя подвижная часть теодолита состоит из корпуса горизонтального круга 25 и двух вертикальных несущих колонок 13, на одной из которых размещен корпус вертикального круга 18. Все эти части выполнены как единое целое и, как указано выше, именуется алидадой горизонтального круга. Следует, однако, заметить, что среди перечисленных выше частей не указана главная – отсчетная система, из-за которой вся верхняя подвижная часть теодолита и называется алидадой. Отсчетная система находится внутри корпуса алидады горизонтального круга.

Между несущими колонками находится корпус зрительной трубы 17 теодолита, выполненный как единое целое вместе с горизонтальной осью трубы (рис.1, ось ). Концы горизонтальной оси закреплены в так называемых лагерах (втулках), расположенных в несущих колонках алидады горизонтального круга.

Зрительная труба имеет внутреннюю фокусировку и является сложным оптико-механическим устройством. Оптическая схема зрительной трубы (рис.3) включает в себя такие оптические элементы как объектив 1, фокусирующую линзу 2, плоскопараллельную пластинку с сеткой нитей 3 и окуляр 4.

 
Рисунок 15.5 – Оптическая схема зрительной трубы теодолита Т30

Объективом называется линза или система линз оптического прибора, обращенная к наблюдаемому предмету и строящая действительное обратное изображение этого предмета в своей задней фокальной плоскости [6, Федоров, с.43]. Объектив 22 (рис. 2) находится с того конца зрительной трубы, который имеет больший диаметр.

Окуляр служит для увеличения действительного изображения, образованного объективом, которое совмещено с передней фокальной плоскостью окуляра, и используется как лупа, с той лишь разницей, что через лупу рассматривается предмет, а через окуляр его изображение, построенное объективом [6, Федоров, с.43]. Окуляр 21 (рис. 2) располагается на противоположном от объектива конце трубы и обращен к глазу наблюдателя.

Между фокусирующей линзой 2 (рис.3) и окуляром 4 внутри зрительной трубы размещена сетка нитей, в плоскости которой формируется изображение рассматриваемого предмета. Сетка нитей – это плоскопараллельная пластинка 3 с выгравированными на ней пересекающимися штрихами, которые видны в поле зрения окуляра зрительной трубы (рис.4).

Основные штрихи сетки используются для наведения зрительной трубы в горизонтальной и вертикальной плоскости на наблюдаемую точку или объект. Система двух вертикальных штрихов называется биссектором. Наведение зрительной трубы в горизонтальной плоскости на наблюдаемую точку рекомендуется выполнять с помощью биссектора, поскольку такое наведение всегда более точное, чем по одной нити. Точка пересечения основных штрихов сетки называется перекрестием сетки нитей. Перекрестие сетки нитей используется для визирования на наблюдаемые точки.

 
Рисунок 15.6 – Сетка нитей зрительной трубы теодолитов Т30, 2Т30

Фокусирующая линза и плоско-параллельная пластинка с сеткой нитей находятся внутри зрительной трубы и непосредственно для наблюдателя не видны.

Как отмечалось в разделе 2 (стр. 12) мысленная линия, соединяющая перекрестие сетки нитей и заднюю главную точку объектива, называется визирной осью зрительной трубы, а ее продолжение до наблюдаемого предмета или цели – линией визирования. Для правильной установки визирной оси оправа сетки нитей имеет два горизонтальных и два вертикальных исправительных или иначе юстировочных, что одно и то же, винта (рис.4), которые используются при исправлении или юстировке положения сетки нитей. С помощью исправительных винтов плоскопараллельная пластинка, на которой выгравирована сетка нитей, перемещается при исправлении ее положения влево-вправо или вверх-вниз.

Наблюдатель в процессе визирования на цель должен видеть в поле зрения трубы четкие изображения штрихов сетки нитей и рассматриваемого объекта. Операция по обеспечению этого условия называется установкой зрительной трубы по глазу и по предмету.

Четкое изображение штрихов сетки нитей получают путем вращения диоптрийного кольца окуляра 21 (рис.2). Эта операция называется установкой зрительной трубы по глазу и выполняется каждым наблюдателем в зависимости от остроты его зрения перед началом наблюдений и периодически уточняется.

Установку зрительной трубы по предмету или, иначе говоря, фокусировку зрительной трубы, выполняют при помощи рукоятки фокусировочного винта или (другое название) кремальеры 14 (рис.2) при визировании на каждый предмет (при этом перемещается фокусирующая линза 2 (рис.3) внутри зрительной трубы).

studopedia.su

Теодолит – подробное описание прибора и его виды. 100 фото и правила работы

Геодезия – одна из самых древних наук. Уже в XVII в. появились первые устройства для проведения промеров. В их числе был и оптический теодолит.

Описание прибора. Его виды

Теодолит называется геодезический прибор, служащий для измерения как вертикальных, так и горизонтальных углов на местности. Принято выделять теодолиты следующих видов:

  • Техназначения.
  • Точного измерения.
  • Высокоточные.

В зависимости от сложности конструкционного решения геодезические приборы могут быть:

Простого типа. Здесь алидада и вертикальная цилиндрическая ось связаны между собой.

Повторительного типа. Вращение лимба и алидады может быть как совместным, так и раздельным. Благодаря приборам подобного типа можно проводить измерения углов не только по классической методике, но и способом повторений.

Теодолиты могут быть оснащены самой разнообразной оптикой, начиная с фотоаппарата и кончая видеокамерой. Отсюда и соответствующие названия – фототеодолит и кинотеодолит.

Современные теодолиты весьма высокоточны и технологичны. Например, гиротеодолит позволяет производить измерения азимута во всех направлениях.

Самым популярным сегодня видом теодолита является электронный теодолит. Во всём, что касается точности измерений, он гораздо лучше своего оптического аналога. Подобные приборы оснащены электронным дисплеем и встроенной памятью.

Оптический теодолит

Достоинства оптического теодолита:

  • Надёжность.
  • Устойчивость к разным климатическим условиям.
  • Отсутствие необходимости в аккумуляторе.
  • Стойкость к температурным перепадам.

Недостатки:

  • Необходимость специальных знаний для получения точных результатов.
  • Значительная продолжительность замеров.

Электронный теодолит

К положительным сторонам электронного теодолита относятся:

  • Удобный дисплей.
  • Более быстрое проведение измерений.
  • Позволяет работать в сумерки.
  • Не требует от человека особых навыков.

Минусы:

  • Ограниченность возможного температурного диапазона. При температуре ниже 20°С нельзя снимать отсчёты.
  • Требуется возможность подключаться к электросети для зарядки.

Правила работы с теодолитом

Как же пользоваться теодолитом? Это не так сложно, как кажется на первый взгляд.

Вначале необходимо поместить прибор в вершину угла, который вы хотите измерить. Причём лимб должен быть своим центром в данной точке.

Затем воспользуйтесь алидадой (вращаемой линейкой) – совместите её с одной из сторон угла и отмечайте показания по кругу.

Далее переместите алидаду ко второй стороне угла и зафиксируйте получившуюся цифру. Разница этих двух показаний и будет равна величине угла. Вот и весь принцип работы теодолита.

Конструкция теодолита

Как показывают фото данного прибора, в его состав входят:

  • Лимб. Это плоский стеклянный диск, на поверхность которого нанесена шкала углов от 0 до 360 градусов.
  • Алидада. Это схожий стеклянный диск с отсчётной насечкой, расположенный на одной оси с лимбом. Алидада может свободно вращаться.
  • Оптический прибор. Состоит из объектива, фокусирующей линзы и сетки нитей, изготовленной из стекла. Насечки на последней используют для ориентирования при наведении на угол.
  • Уровни. Применяются при установке устройства в вертикальном положении.
  • Подъёмные винты. С их помощью происходит регулировка прибора.

Все рассмотренные выше составные детали помещены в корпус, устанавливаемый на треногу.

Теодолитная съёмка

Теодолитная съёмка – это группа мероприятий, проводимых при помощи теодолита с целью построения контурного плана местности. Она состоит из двух этапов:

  • Вначале создаётся геодезическое обоснование, прокладываются все теодолитные ходы по всему периметру исследуемой территории.
  • Далее измеряются диагонали внутри участка.

Рассмотрим инструкцию для проведения теодолитной съёмки:

  • Определите и зафиксируйте опорные точки. На их подборку значительное влияние оказывают особенности рельефа участка. Шаг между точками обычно колеблется от 100 до 400 м.
  • Установите обоснования и восстановите межевые знаки.
  • Подготовьте ходы к проведению измерений. Очистите местность от кустов, поросли и кустарников, мешающих промеру.
  • Измерьте при помощи теодолита необходимые линии и углы.
  • Проведите съёмку ситуации (диагоналей).

Фото теодолита

Также рекомендуем посетить:

zdesinstrument.ru


Смотрите также